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ABSTRACT

This report describes a new seismic source characterization (SSC) model for the Central and
Eastem United States (CEUS). It will replace the Seismic Hazard Methodology for the Central
and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard
Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore
National Laboratory Model, (Bernreuter et al., 1989), The objective of the CEUS SSC Project is
to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis ,
Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent
the center, body, and range of technically defensible interpretations of the available data, models,
and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic
source characterization and ground motion characterization. These two components are used to
calculate probabilistic hazard results (or seismic hazard curves) at a particular site, This report
provides a new seismic source model,

'Results and Findings

The product of this report is a regional CEUS SSC model. This model includes consideration of
an updated database, full assessment and incorporation of uncertainties, and the range of diverse
technical interpretations from the larger technical community. The SSC model will be widely
applicable to the entire CEUS, so this project uses a ground motion model that includes generic
variations to allow for a range of representative site conditions (deep soil, shallow soil, hard
rock). Hazard and sensitivity calculations were conducted at seven test sites representative of
different CEUS hazard environments.

Challenges and Objectives

The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and
who wish to use an updated SSC model. This model is based on a comprehensive and traceable
process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Fxperts. The model
will be used to assess the present-day composite distribution for seismic sources along with their
characterization in the CEUS and uncertainty, In addition, this model is in a form suitable for use
in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined
Operating License Applications (COLAs).

Applications, Values, and Use

Development of a regional CEUS seismic source model will provide value to those who (1) have
submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2)
will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues
resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs
to meet design and periodic review requirements for current and future nuclear facilities. This
work replaces a previous study performed approximately 25 years ago. Since that study was
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completed, substantial work has been done to improve the understanding of seismic sources and
their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable
basis for computing PSHA for a future time span. Use of 2 new SSC model reduces the risk of
delays in new plant licensing due to more conservative interpretations in the extstmg and future
literature.

Perspectwe

The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE),
and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this
purpose was composed of distinguished subject matter experts from industry, govemment, and
academia. The resulting model is unique, and because this project has solicited input from the
present-day larger technical community, it is not likely that there will be a need for significant
revision for a number of years. See also Sponsors’ Perspective for more details.

Approach

The goal of this project was to implement the CEUS SSC work plan for developing a regional
CEUS SSC model. The work plan, formulated by the project manager and a technical integration
team, consists of a series of tasks designed to meet the project objectives. This report was
reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S.
Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were
considered when preparing the report. The SSC model was completed at the end of 2011.

Keywords

Probabilistic seismic hazard analysis (PSHA)
Seismic source characterization (SSC)
Seismic source characterization model
Central and Bastemn United States (CEUS)
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Figure 5.3.3-1 Likelihood distribution for rate parameter A derived using Equation 5.3.3-1
for N =2 and T = 2,000 years. Top: normalized probability density function for A.
Bottom: resulting cumulative distribution-function, Dashed lines show the
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a continuous probability distribution.
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probability of exceedance in §0 years (Petersen et al., 2008) A-95
Figure A-52 USGS NSHM ground mation hazard at spectral acceleration of 1 hz with

10% probability of exceedance in 50 years (Petersen et al., 2008).........coewwcrsrmsssssensens A-88
Figure A-53 USGS NSHM ground motion hazard at spectral acceleration of 3 hz with 2%

probability of exceedance in 50 years (Petersen et al., 2008) A-97
Figure A-54 USGS NSHM ground motion hazard at spsctral acceleration of 3 hz with 5%

probability of exceedance in 50 years (Petersen et al., 2008) A-98
Figure A-55 USGS NSHM ground motion hazard at spectral acceleration of 3 hz with

10% probability of exceedance in 50 years (Petersen et al., 2008) .......c.ccceerercenecrronceees A-99
Figure A-56 USGS NSHM ground motion hazard at spectral acceleration of 5 hz with 2% .

probability of exceedance in §0 years (Petersen et al., 2008) A-100
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Figure A-57 USGS NSHM ground motion hazard at spectral acceleration of 5 hz with 5% .

probability of exceedance in 50 years (Petersen et al., 2008) A-101
Figure A-58 USGS NSHM ground motion hazard at spectral acceleration of 5 hz with

10% probability of exceedance in 50 years (Petersen et al., 2008)......... ssesesssassrsrene A-102
Figure A-59 USGS NSHM peak ground acceleration with 2% probability of exceedance

in 50 years (Petersen &t al., 2008) A-103
Figure A-80 USGS NSHM peak ground acceleration with 5% probability of exceedance

in 50 years (Petersen et al., 2008) A-104
Figure A-61 USGS NSHM peak ground acceleration with 10% probabmty of exceedance

’ in 50 years (Petersen et al., 2008) A-105
Figure A-62 Deformation of the Nosth American Plate interior using GPS station data

(Calais et al., 2008) A-107
Figure A-63 Stress measurement update for the CEUS (Hurd, 2010).........cceeumnierivmmacarnanes A-110
Figure A-64 CEUS SSC Project study area boundary . A-112
Figure A-85 USGS Quaternary fault and fold database (USGS, 2008) .......occcrcrsecrreronnssivens A-114
Figure A-66 Quatemary features compilation for the CEUS (Crone and Wheeler, 2000;

Whesler, 2005; USGS, 2010) 3 A-1186
Figure A-87 CEUS Mesozoic rift basins after Benson (1992) A-118
Figure A-68 CEUS Mesozoic rift basins after Dennis et al. (2004) A-120
Figure A-89 CEUS Mesozoic rift basins after Schlische (1993) A-122
Figure A-70 CEUS Mesozoic rift basins after Withjack et al. (1998) A-124
Figure A-71 RLME zones for the CEUS A-126
Figure A-72 Mesozoi¢ and non-Mesozolc zones for the CEUS, wide interpretation............. A-128
Figure A-73 Mesozoic and non-Mesozoic zones for the CEUS, narrow interpretation......... A-129
Figure A-74 CEUS seismotectonic zones mode! A iesessverasnssersesassuesresnaesssine A-130
Figure A-75 CEUS selsmotectonic zones model B.......... A-131
Figure A-76 CEUS seismotectonic zones model C .. " . A-132
Figure A-77 CEUS seismotectonic zones model D vensionss A-133

Figure E-1 Map of CEUS showing locations of regional data sets included in the CEUS
SSC Project paleoliquefaction database, including New Madrid seismic zone and
surrounding region; Marianna, Arkansas, area; St, Louis region; Wabash Valley
seismic zone and surrounding region; Arkansas-Lounsiana-Mmsassippi region
Charleston seismic zone; Atlantic Coastal region and the Central Virginia seismic
zone; Newburyport, Massachusetts, and surrounding region; and Charlevoix
seismic zone and surrounding region. E-68

Figure E-2 Diagram illustrating size parameters of liquefaction features, including sand

blow thicknass, width, and length; dike width; and sill thickness, as well as some of

the diagnostic characteristics of these features. E-69
Figure E-3 Diagram illustrating sampling strategy for dating of liquefaction features as

well as age data, such as 14C maximum and 14C minimum, used to calculate

preferred age estimates and related uncertainties of liquefaction features.............essees E-70

Figure E-4 GIS map of New Madrid seismic zone and surrounding region showing
porﬁons of rivers searched for earthquakeJnduced liquefaction features by M.
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Tuttle, R. Van Arsdale, and J. Vaughn and collaborators (see explanation);
information contributed for this report. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983. E-71

Figure E-5 G!S map of New Madrid seismic zone and surrounding region showing
locations of liquefaction features for which there ate and are not radiocarbon data.
Map projection is USA Contiguous Albers Equa! Area Conic, North America Datum
1983.

E72

Figure E-6 G!IS map of New Madrid seismic zone and surrounding region showing
locations of liquefaction features that are thought to be historical or prehistoric in
age or whose ages are poorly constrained. Map projection is USA Contiguous
Albers Equal Area Conic, North America Datum 1983. LE-73

Figure E-7 GIS map of New Madrid seismic zone and surrounding region showing
preferred age estimates of liquefaction features; features whose ages are poorly
constrained are excluded. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 19883. . E-74

Figure E-8 GIS map of New Madrid seismic zone and surrounding region showing
measured thicknesses of sand blows, Map projection is USA Conlrguous Albers
Equal Area Conic, North America Datum 1983.., E-75

Figure E-9 GIS map of New Madrid seismic zorie and surroundlng region showing
preferred age estimates and measured thicknesses of sand blows. Map projection
is USA Contiguous Albers Equal Area Conic, North America Datum 1983. ............c...oe, E-76

Figure E-10 GIS map of New Madrid seismic zone and surrounding region showing
measured widths of sand dikes. Map'projection is USA Conﬁguous Albers Equal
Area Conic, North America Datum 1983. E-77

Figure E-11 GIS map of New Madrid seismic zone and surrounding region showing )
preferred age estimates and measured widths of sand dikes. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. .....ccmccsnrvcurerern. E-78

Figure E-12 GIS map of New Madrid seismic zone and surrounding region illustrating
preferred age estimates and measured thicknesses of sand blows as well as
preferred age estimates and measured widths of sand dikes for sites where sand
blows do not occur. Map projechen is USA Contiguous Albers Equal Area Conic,
North America Datum 1983. E-79

Figure E-13 GIS map of Marianna, Arkansas, area showing seismicity and locatlons of
paleoliquefaction features relative to mapped traces of Eastern Reelfoot rift margin
fault, White River fault zons, Big Creek fault zone, Marianna escarpment, and
Daytona Beach lineament. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 1983. E-80

Figure E-14 (A) Trench log and (B) ground-penetratmg radar profile, showrng vertical
sections of sand blows and sand dikes at Daytona Beach SE2 site along the
Daytona Beach lineament southwest of Marianna, Arkansas. Vertical scale of GPR
profile is exaggerated (modified from Al-Shukri et al., 2009). E-81

Figure E-15 GIS map of Marianna, Arkansas, area showing locations of liquefaction
features for which there are and are not radiocarbon data. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. ........ resssasnaissrennsionss E-82
Figure E-16 GIS map of Marianna, Arkansas, area showing locations of liquefaction
features that are thought to be historical or prehistoric in age or whose ages are
poorly constrained. To date, no liquefaction features thought to have formed during

Iviii

1811-1812 earthquakes have baen found in area. Map projection is USA

Contiguous Albers Equal Area Conic, North America Datum 1983. ......cooecvoscssennens

Figure E-17 GIS map of Marianna, Arkansas, area showing preferred age estimates of
liquefaction features; features whose ages are poorly constrained are excluded.
Map prcqectron is USA Contiguous Albers Equal Area Conic, North America Datum
1983

Figure E-18 GIS map of Marianna, Arkansas, area showing measured thicknesses of
sand blows. Map projection is USA Contiguous Albers Equal Area Conic, North
America Datum 1983.

Figure E-19 GIS map of Marianna, Arkansas, area shawrng preferred age estimates and
measured thicknesses of sand blows.-Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983.

Figure E-20 GIS map of Marlanna, Arkansas, area showing measured widths of sand
dikes. Map projection is USA Contiguous Albers Equal Area Conlc North America
Datum 1983.....

Figure E-21 GIS map of Marianna, Arkansas, area showmg preferred age estimates and
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983.
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Frgure E-22 GIS map of St. Louis, Missouri, regicn showing seismicity and portions of
rivers searched for earthquake-induced liquefaction features by Tuttle and
collaborators; information contributed for this report. Map pro;echon is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. . -

Figure E-23 GIS map of St. Louis, Missouri, region showing locations of quuefaction
features, including several soft-sediment deformation structures, for which there are
and are not radiocarbon data. Map projection is USA Contrguous Albers Equal Area
Conic, North America Datum 1983.

Figure E-24 GIS map of St. Louls, Missouri, region showing locations of liquefaction
features that are thought to be hrstorlcal or prehistoric in age or whose ages are
poorly constraitied. Map projection is USA Conﬂguous Albers Equal Area Conic,
North-America Datum 1983

Figure E-25 GIS map of St. Louis, Missouri, region showing preferred age estimates of
liquefaction features; features whose ages are poorly constrained, including several
that are prehistoric in age, are not shown. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983.

Figure E-26 GIS map of St. Louis, Missouri, region showing measured thicknesses of
sand blows at similar scale as used in Figure E-8 of sand blows in New Madrid
seismic zone. Note that few sand blows have bean found in St. Louis region. Map
projection is USA Contiguous Albers Equal Area Conrc North America Datum
1983,

Figure E-27 GIS map of St. Louis, Missouri, region showing preferred age estimates and
measured thicknesses of sand blows. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1883

Figure E-28 GIS map of St. Louis, Missouri, region showing measured widths of sand
dikes at similar scale as that used in Figure E-10 for sand dikes in New Madrid
seismic zone. Map projection is USA Contiguous Albers Equal Area Conic, North

America Datum 1983.
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Figure E-29 GIS map of St. Louis, Missouri, region showing measured widths of sand
dikes at similar scale as that used in Figures E-42 and E-48 for sand dikes in the
Newburyport and Charlevoix regions, respectively. Map projection is USA

Contiguous Albers Equa!l Area Conic, North America Datum 1983. .w..cceaeeriicnnnne rereon

Figure E-30 GIS map of St. Louls, Missouri, region showing preferred age estimates and
measured widths of sand dikes. Map projection is USA Conhguous Albers Equal
Area Conic, North America Datum 1983,

.. E-88

E-97

Figure E-31 GIS map of Wabash Valley seismic zone and surrounding region showing
portions of rivers searched for earthquake-induced liquefaction features (digitized
from McNulty and Obermeier, 1999). Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983,

E-98

Figure E-32 GIS map of Wabash Valley seismic zone and surroundmg region showing
measured widths of sand dikes at similar scale as that used in Figures E-10 and E-
11 for sand dikes in New Madrid seismic zone. Map projection is USA Contiguous
Albers Equal Area Conic, North America Datum 1983.

Figure E-33 GIS map of Wabash Valley region of Indiana and Ilinois showing preferred
age estimates and paleoearthquake interpretation. Map projection is USA

" Contiguous Albers Equal Area Conic, North America Datum 1983. ............ risessesnsannne

Figure E-34 GIS map of Arkansas-Louisiana-Mississipp! (ALM) region showing
paleoliquefaction study locations. Map projection is USA Contiguous Albers Equal
Area Conic, Noith America Datum 1983,

Figure E-35 GIS map of Charleston, South Carolina, reg:on showing locations of
paleollquefaction features for which there are and are not radiocarbon dates. Map
projection is USA Contiguous Albers Equa! Area Conic, North America Datum
1983.

Figure E-36 GIS map of Charlsston, South Carolina, region showing locations of
historical and prehistoric liquefaction features. Map. projection is USA Contiguous
Albers Equal Area Conic, Narth America Datum 1983.

Figure E-37 Map of Atiantic coast region showing areas searched for paleoliquefaction
features by Gelinas et al. (1998) and Amick, Gelinas, et al. (1990). Rectangles -
indicate 7.5-minute quadrangles in which sites were investigated for presence of
paleoliquefaction features. The number of sites investigated is shown within that
quadrangle, if known. Orange and yellow indicate quadrangles in which
paleoliquefaction features were recognized.

Figure E-38 Map of Central Virginia seismic zone region showing portions of rivers
searched for earthquake-induced liquefaction features by Obermeier and McNulty
(1998).

Figure E-39 GIS map of Newburyport, Massachusetts, and surrounding region showing
selsmicity and portions of rivers searched for earthquake-induced liquefaction
features (Gelinas et al., 1998; Tuttle, 2007, 2008). Solid black line crossing map
represents Massachusetts—l\!ew Hampshire border. Map pmjection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. . .-

Figure E-40 GIS map of Newburyport, Massachusetts, and surrounding region shovwng
locations of liquefaction. features for which there are and are not radiocarbon dates.
Map projection is USA Contiguous Albers Equal Area Conic, North America Datum
1983,
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Figure E-41 GIS map of Newburyport, Massachusetts, and surrounding region showing
locations of liquefaction features that are thought to be historical or prehistoric in
age or whose ages are poorly constrained. Map projection is USA Conhguous
Albers Equal Area Conic, North America Datum 19883. ...

Figure E-42 GIS map of Newburyport, Massachusefts, and surrounding region showing
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983.

Figure E-43 GIS map of Newburyport, Massachusetts, and surrounding region showing
preferred age estimates and measured widths of sand dikes, Map pro;ectlon is USA
Contiguous Albers Equal Area Conic, North America Datum 1983.. T

Figure E-44 Map of Charlevoix seismlc zone and adjacent St. Lawrence Lowlands
showing mapped faults and portions of rivers along which reconnalssance and
searches for earthquake-induced liquefaction features were performed. Charlevoix
seismic zone is defined by concentration of earthquakes and locations of historical
earthquakes northeast of Quebec City, Devonian impact structure in vicinity of
Charlevoix seismic zone is outlined by black dashed line. Taconic thrust faults are
indicated by solid black lines with sawteeth on upper plate; lapetan rift faults are
shown by solid black lines with hachure marks on downthrown side (modified from
Tutltle and Atkinson, 2010).

Figure E-45 GIS map of Charlevoix seismic zone and surrounding region showing
locations of liquefaction features, including several soft-sediment deformation
structures, for which there are and are not radiocarbon data, Note the location of
1988 M 5.9 Saguenay earthquake northwest of the Charlevoix seismic zone. Map

- projection is USA Contiguous Albers Equal Area Conic, North America Datum
1983,

Figure E-46 GIS map of Charievoix seismic zone and surrounding region showing
locations of liquefaction features that are modemn, historical, or prehistoricin age, or
whose ages are poorly constrained. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983. ;

Figure E-47 GIS map of Charleveix seismic zone and surroundmg region showing
preferred age estimates of liquefaction features; features whose ages are poorly
constrained are excluded. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 1983.

Figuré E-48 'GIS map ¢f Charlevoix seismic zong and surrounging region.showing
measured widths of sand dikes. Map projection is: USA Gontiguous Albers Equal
Area Conic, North America Datum 1983.

Figure E-49 GIS map of Charlevoix seismic zone and surrounding region showing
preferred age estimates and measured widths of sand dikes. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. ............ ronssorasns vasnes

Figure E-50 Photograph of moderate-sized sand blow (12 m long, 7 m wide, and 14 cm
thick) that formed about 40 km from epicenter of 2001 M 7.7 Bhyj, India,
earthquake (from Tuttle, Hengash, et al., 2002), combined with schematic vertical
section illustrating structurat and s!ratigraphlc relations of sand blow, sand dike, and
source layer (modified from Sims and Garvin, 1995).

Figure E-51 Tres trunks buried and killed by sand bfows, vented during 1811-1812 New
Madrid earthquakes (from Fuller, 1912).
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Figure E-52 Large sand-blow crater that formed during 2002 M 7.7 Bhuj, India,

earthquake. Backpack for scale. Photograph: M. Tuttle (2001). E-119
Figure E-53 Sand-blow crater that formed during 1886 Charleston, South Carolina,
earthquake. Photograph: J.K, Hillers (from USGS Photograph Library). ....csueecsies E-120

Figure E-54 Photograph of sand blow and related sand dikes exposed in trench wall and

fioor in New Madrid seismic zone. Buried soil horizon is displaced downward

approximately 1 m across two dikes. Clasts of soil horizon occur within dikes and

overlying sand blow. Degree of soll development above and within sand blow

suggests that it is at least several hundred years old and formed prior to 1811-1812

New Madrid earthquakes. Organic sample (location marked by red flag) from crater

fill will provide close minimum age constraint for formation of sand blow. For scale,

each colored intervals on shovel handle represents 10 cm. Photograph: M. Tutlle...... E-121
Figure E-55 Sand dikes, ranging up to 35 cm wide, originate in pebbly sand layer and

intrude overlying diamicton, These features were exposed in cutbank along

Cahokia Creek about 25 km northeast of downtown St. Louis (from Tuttle, 2000)....... E-122

Figure E-56 Photograph of small diapirs of medium sand intruding base of overlying
- deposit of interbedded ¢layey silt and very fine sand, and clasts of clayey silt in
underlying medium sand, observed along Ouelle River in Charlevoix seismic zone.
Sand diapirs and clasts probably formed during basal erosion and foundering of
clayey slit due to liquefaction of the underlying sandy deposit. Red portion of shovel
handle represents 10 cm (modified from Tuttle and Atkinson, 2010)......ceccucuee. PR E-123

Figures E-57 (A) Load cast formed in laminated sediments of Van Norman Lake during
1952 Kern County, California, earthquake. Photograph: J. Sims (from Sims, 1975).
(B) Load cast, pseudonodules, and related folds formed in laminated sediment
exposed along Malbale River in Charlevoix seismic zone. Sand dikes crosscutting
these same laminated sediments occur at a nearby site. For scale, each painted
interval of the shove! handle represents 10 cm (modified from Tuttle and Atkinson,
2010). ' ’

Figure E-58 Log of sand blow and uppearmost portions of related sand dikes exposed in
trench wall at Dodd site in New Madrid seismic zone. Sand dikes were also
observed in opposite wall and trench floor. Sand blow buries pre-event A horizon,
and a subsequent A horizon has developed in top of sand blow. Radiocarbon dating
of samples collected above and below sand blow brackets its age between 480 and
660 yr BP. Artifact assemblage indicates that sand blow formed during late
Mississippian (300-550 yr BP or AD 1400-1670) (modified from Tuttle, Collier, et
al., 1999). . E-125

Figures E-59 (A) Photograph of earthquake-induced liquefaction features found in
association with cultural horizon and pit exposed in trench wall near Blytheville,
Arkansas, in New Madrid seismic zone. Photograph: M. Tuttle. (B) Trench log of
features shown in (A). Sand dike formed in thick Native American occupation
horizon containing artifacts of early Mississippian cultural period (850—1,150 yr BF).
Cultural pit dug into top of sand dike contains artifacts and charcoal used to
constrain minimum age of liquefaction features (modified from Tuttls and Schweig,

E-124

1995).. E-126
Figure E-60 In situ tree trunks such as this one buried and killed by sand blow in New

Madrid seismic zone offer opportunity to date paleoearthquakes to the year and

season of occurrence. Photograph: M. Tuttle. E-127
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Figure H-1-1 Region covered by the CEUS SSC mode!

.Flgure E-681 Portion of dendrocalibration curve illustrating conversion of radiccarbon age

to calibrated date in calendar years. In example, 2-sigma radiocarbon age of 2,280
2,520 BP is converted to calibrated date of 770-380 BC (from Tuttle, 1998)..............

Figure E-62 Empirical relation developed between A horizon thickness of sand blows

and years of soil development in New Madrid region. Horizontal bars reflect
unceriainties in age estimates of liquefaction features; diamonds mark midpoints of
possible age ranges (from Tuttle et al., 2000)

E-129

Figure E-63 Diagram illustrating earthquake chronology for New Madrid seismic zone for

past 5,500 years based on dating and comelation of liquefaction features at sites
(listed at top) across region from north to south. Vertical bars represent age
estimates of individua! sand blows, and horizonta! bars represent event times of
138 yr BP (AD 1811-1812); 500 yr BP + 150 yr; 1,050 yr BP + 100 yr; and 4,300 yr
BP + 200 yr (modified from Tuttle, Schweig, et al., 2002; Tuttle et al,, 2005). .............

Figure E-64 Diagram illustrating earthquake chronology for New Madrid seismic zone for

past 2,000 years, similar to upper portion of diagram shown in Figure E-83. As in
Figure E-83, vertical bars represent age estimates of individual sand blows, and
horizontal bars represent event times. Analysis performed during CEUS SSC
Project derived two possible uncertainty ranges for timing of palecearthquakes,
illustrated by the darker and lighter portions of the colored horizonta! bars,

" respectively: 503 yr BP + 8 yr or 485 yr BP £ 65 yr, and 1,110 yr BP + 40 yr or 1055

+ 95 yr (modified from Tuttle, Schweig, et al., 2002).... ;

. E-130

E-131

Figure E-85 Maps showing spatial distributions and sizes of sand blows and sand dikes

attributed to 500 and 1,050 yr BP events. Locations and sizes of liquefaction

" features that formed during AD 1811-1812 (138 yr BP) New Madrid earthquake

sequence shown for comparison (modified from Tuttle, Schwelg, et al., 2002)...........

Figure E-66 Liquefaction fields for 138 yr BP (AD 1811-1812); 500 yr BP (AD 1450); and

1,050 yr BP (AD 900) events as interpreted from spatial distribution and
stratigraphy of sand blows (modified from Tuttle, Schweig, et al., 2002): Ellipses
define areas where similar-age sand blows have basn mapped. Overlapping
ellipses indicate areas where sand blows are composed of multiple units that
formed during sequence of earthquakes. Dashed ellipse outlines area where
historical sand blows are composed of four depositional units. Magnitudes of
earthquakes in 500 yr BP and 1,050 yr BP are inferred from comparison with 1811-
1812 liquefaction fields. Magnitude estimates of December (D), January (J), and
February (F) main shocks and large aftershocks taken from several sources;
rupture scenario from Johnston and Schweig (1996; modified from Tuttle, Schweig,
et al.,, 2002). :

E-133

Figure E-67 Empirical relation between earthquake magnitude and epicentral distance to

farthest known sand blows induced by instrumentally recorded earthquakes

(modified from Castilla and Audemard, 2007).

Figure E-68 Distances to farthest known liquefaction features indicate that 500 and

1,050 yr BP New Madrid events were at least of M 6.7 and 6.9, respectively, when
plotted on Ambraseys (1988) relation between earthquake magnitude and
epicentral distance 1o farthest surface expression of liquefaction. Similarity in size
distribution of historical and prehistoric sand blows, however, suggests that
paleoearthguakes were comparable in magnitude to 1811-1812 events or M ~7.8
(modified from Tutlle, 2001).
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Figure H-2-1 Master logic tree for the CEUS SSC model

Figure H-3-1 Logic tree for the Mmax zones branch of the master logic tree.......c.cocerrveeenene

Figure H-3-2 Mesozoic extended (MESE-W) and non-extended (NMESE-W) Mmax

zones for the “wide® interpretation.......

Figure H-3-3 Mesozoic extended (MESE-N) and non-extended (NMESE-N) Mmax zones
for the “namrow” interpretation

Figure H-4-1(a) Logic tree for the seismotectonic zones branch of the master logic tree......
Figure H-4-1(b) Logic tree for the seismotectonic zones branch of the master logic tree......

Figure H-4-2 Seismotectonic zones shown in the case where the Rough Creek Graben
is not part of the Reelfoot Rift (RR) and the Paleozoic Extended zone is namrow
(PEZ-N)

Flgure H-4-3 Seismotectonic zones shown in the case where the Rough Creek Graben
Is part of the Reelfoot Rift (RR-RCG) and the Paleozoic Extended zone is narrow

(PEZ-N)
Figure H-4-4 Seismotectonic zones shown in the case where the Rough Creek Graben

is not part of the Reelfoot Rift (RR) and the Paleozoic Extended zone Is wide (PEZ-
W)

Figure H-4-5 Selsmotectonic zones shown in the case where the Rough Creek Graben
is part V?It the Reelfoot Rift (RR-RCG) and the Pa!eozou: Extended zone is wide
(PEZ*

Figure H-5-1 Logic tree for the RLME source branch of the master logic tree..........ccevrrnne..

Figure H-5-2 Location of RLME sources in the CEUS SSC model

Figure H-5.1-1 Loglc tree for Charlevoix RLME source

Figure H-5.1-2 Charlevoix RLME source geometry .
Figure H-5.2-1(a) Logic tree for Charleston RLME source

Figure H-6.2-1(b) Logic tree for Charleston RLME source

Figure H-5.2-2 Charleston RLME alternative source geometries

Figure H-5.3-1 Logic tree for Cheraw RLME source

Figure H-5,3-2 Cheraw RLME SOUICE GEOMBINY.......c.eceeeeeeemreererrnsmsmersessssssessrsns sessmasassesere

Figure H-5.4-1 Logic tree for Meers RLME source

Figure H-5.4-2 Meers RLME source geometries.

Figure H-5.5-1 Logic tree for NMFS RLME source

Figure H-5.5-2 New Madrid South (NMS) fauit altemative RMLE source geometries;
Blytheville Arch-Bootheel Lineament (BA-BL) and Blytheville Arch-BIythevIIIe fault

zone (BA-BF2) ........
Figure H-5.5-3 New Madrid North (NMN) fault alternative RMLE source geometries: New

Madrid North (NMN_S) and New Madrid North plus extension (NMN_L) ....ccc.ccoenreeeneen.

Figure H-5.5-4 Reelfoot Thrust (RFT) fault alternative RMLE source geometries:

Reslfoot thrust (RFT_S) and Reelfoot thrust plus extensions (RFT S ) O

Figure H-5.6-1 Logic tree for ERM-S RLME source

Figure H-5.6-2 Logic tree for ERM-N RLME source aeenenne

Figure H-5.6-3'ERM-S RLME source geometries
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Figure H-5.6-4 ERM-N RLME source geometry H-73

Figure H-5.7-1 Logic tree for Marianna RLME source H-74
Figure H-5.7-2 Marianna RLME source geometry H-75
Figure H-5.8-1 Logic tree for Commerce Fault Zone RLME source H-76
Figure H-5.8-2 Commerce RLME source geometry H-77
Figure H-5.9-1 Logic tree for Wabash Valiey RLME source H-78
Figure H-5.9-2 Wabash Valley RLME source geometry .... . : H-79

Figure J-1 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 1 . 2.
Figure J-2 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non—extended Case A magnitude

weights: Realization 2... J-3

Figure J-3 Map of the rate and b-value for the study region under-the Mmax zonation,

with no separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 3.. " " J-4
Figure J-4 Map of the rate and b-value for the study region under the Mmax zonatnon,

with no separation of Mesozoic extended and non-extended Case A magnitude

welghts: Realization 4 . J-5
Figure J-5 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 5 J-6
Figure J-8 Map of the rate and b-value for the study reglon under the Mmax zonatlon.

with no separation of Mesozoic extended and non-exlended Case A magnitude

weights: Realization 6 . wed=?
Figure J-7 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended Case A magnitude

weights: Realization 7 J-8

Figure J-8 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 8 J-9
Figure J-8 Map of the coefficient of variation of the rate and the standard deviation of the

b-valus for the study region under the Mmax zonation, with no separation of
Mesozoic extended and non-extended; Case A magnitude weights........ecvreaiseeens evassens J-10

Figure J-10 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended Case B magnitude

weights: Realization 1 J-11
Figure J-11 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended; Case B magnitude

weights: Reallzation 2 .... wenrned=12
Figure J-12 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended Case B magnitude

welghts Realization 3 . J-13
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Figure J-13 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozolc extended and non-extended; Case B magnitude
weights: Realization 4 -

Figure J-14 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 5

J-14

J-16

Figure J-15 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude

weights: Realization 6

Figure J-18 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 7 3

Figure J-17 Map of the rate and b-value for the study regioﬁ under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 8

Figure J-18 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with no separation of
Mesozoic extended and non-extended; Case B magnitude weights........ccoevcemne..n

Figure J-19 Map of the rate and b-value for the study region under the Mmax zonation,

with no separation of Mesozoic extended and non-extended; Case E maghitude
weights: Realization 1 ; i

........

........

J-16

Figure J-20 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 2 . .

Figure J-21 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
. weights: Realization 3 .

........

Figure J-22 Map of the rate and b-valus for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 4

Figure J-23 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extendad and non-extended; Case E magnitude
weights: Realization 5

J-23
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Figure J-24 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozolc extended and non-extended; Case E magnitude

weights: Realization 6 ; ;

Figure J-25 Map of the rate and b-value for the study region under the Mmax zon‘aﬁon,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 7 . y

- Figure J-26 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 8 R

Figure J-27 Map of the coefficiant of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with no separation of

J-25

J-26

J-27

Mesozoic extended and non-extended; Case E magnitude weights.............. reereresssisene ..J-28
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Figure J-28 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 1

Figure J-29 Map of the rate and b-value for the study region unde'r the Mmex zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 2 ; . bouss

J-29

J-30

Figure J-30 Map of the rate and b-value for the study region under the Mmax zonation,

with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 3
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Figure J-31 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude

J-32

weights: Realization 4
Figure J-32 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 5 . ;

Figure J-33 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 6 ;

J-34

Figure J-34 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 7 deebesyes .

Figure J-36 Map of the rate and b-value for the study region under the Mmax zonation,

with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 8 ... . ;

Figure J-36 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case A magnitude Waights.......c.ccceereruscsiansanns

Figure J-37 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 1

J-35

Figure J-38 Map of the rate and b-value for the study region under thé Mmax zonation,
. with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 2.. . ; . [

Figure J-39 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 3

Figure J-40 Map of the rate and b-value for the study region under the Mmax zonation,
. with separation of Mesozoic extended and non-extended; Case B magnitude

J-41

weights: Realization 4 .

Figure J-41 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization §

Figure J-42 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
welights: Realization 6 ; : e i
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F'igure.J-43 Map of the rate and b-value for the sludy region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 7

J-44

Figure J-44 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude

J-45

weights: Realization 8

Figure J-45 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case B magnitude weights......ccececersrerersnser

Figure J-46 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 1

Figure J-47 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 2

-

J-47

Figure J-48 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non—extended Case E magnitude
weights: Realization 3

Figure J-49 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 4

Figure J-50 Map of the rate and b-value for the study region under the Mmax zonahon
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 5

Figure J-51 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude

J-49
J-50

J-51

weights: Reallzation 6
Figure J-52 Map .of the rate and b-value for the study reglon under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude

weights: Realization 7

Figure J-53 Map of the rate and b-valus for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnltude
welghts: Realization 8

J-54

Figure J-54 Map of thé coefficient of varlaﬁon of the rate and the standard deviation of
.the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case E magnitude weights..........cccersveaeeerenrees

Figure J-55 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extendad and non-extended; Case A magnitude
weights: Realization 1

Flgure J-56 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case A magnitude
weights: Realization 2 ;

Figure J-57 Map of the rate and b-value for the sludy region under the Mmax zonation,

with separation of Mesozoic extended and non-extended; Case A magmtude
weights: Realization 3 y
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J-55

Figure J-58 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 4 ....

Figure J-59 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization §

Figure J-60 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 6 ;
Figure J-61 Map of the rate and b-value for the study region under the Mmax zonation,

with separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 7

Figure J-82 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case A magnitude
weights: Realization 8

.J-63

Figure J-63 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case A magnitude wWeights.........cevereerericcoseas . J-64

Figure J-84 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case B magnitude
weights: Realization 1 -

J-65

Figure J-65 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non—exlended Case B magnitude
weights: Realization 2

J-66

Figure J-88 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case B magnitude

)-67

weights: Realization 3

Figure J-87 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozolc extended and non-extended; Case B magnitude

weights: Realization 4
Figure J-68 Map of the rate and b-valuse for the study region under the Mmax zonatnon,
with separation of Mesozoic extended and non-extended; Case B magnitude

weights: Realization 6

Figure J-89 Map of the rate and b-value for the study region under the Mmax zonation.
with separation of Mesozoic extended and non-extended; Case B magnitude
wezghts Realization 6...

Figure J-70 Map of the rate and b-valus for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case-B magnitude
weights: Realization 7 ... i

..J=70

J-71

Figure J-71 Map of the rate and b-valus for the study region under 1he Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 8

J-72

Figure J-72 Map of the coefficlent of variation of the rate and the standard deviahon of
the ‘b-value for the study region under the Mmax zonation, with separation of

J-73

Mesozoic extended and non-extended; Case B magnitude weights...
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Figure J-73 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 1

J-74

Figure J-74 Map of the rate and b-value for the study région under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 2 :

Figure J-75 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 3 .

Figure J-76 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extendad and non-extended; Case E maghnitude
weights: Realization 4 faeas

Figure J-77 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozolc extended and non-extended; Case E magnitude
weights: Realization §......c.cccvereesvcnsniniecssssesniisesssssnsnssissesmarssnssassssnaes

Figure J-78 Map of the rate and b-value for tha study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 8 .. eons

Figure J-79 Map of the rate and b-vaiué for the stﬁdy reéion under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude

weights: Realization 7 ...

Figure J-80 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
. weights: Realization 8...

J-75

«J-76

. J-78

J-79

J-80

J-81

Figure J-81 Map of the coefficient of variation of the réte and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of
Mesozoic extended and non-extended; Case E magnitude weights :

Figure J-82 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
3 )

Figure J-83 Map of the rate and b-value for the sﬁxdy region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization

-84

Figure J-84 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
3 .

J-85

Figure J-85 Map of the rate and b-value for the étudy region under the séismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization

Figure J-86 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narmow interpretation of PEZ; Case A magnitude weights: Realization
5 .

J-87

Figure J;87 Map of the rate and b-value for the study region under the seismotectonic
onation, with narrow interpretation of PEZ; Case A magnitude weights: Realization

L
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J-88

f-'igure J-88 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
7 . .

Figure J-89 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
8

J-80

Figure J-80 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the seismotectonic zonation, with narrow
interpretation of PEZ; Case A magnitude weights ....... :

J-a1

Figure J-91 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
1 5

J-92

Figure J-92 Map of the rate and b-valus for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
2 5

Figure J-83 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
3 . )

J-84

Figure J-94 Map of the rate and b-value for the st.idy region under the seismotectonic

zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization ‘

4

J-95

Figure J-95 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
5

J-96

Figure J-86 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
6 . N

Figure J-87 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
7. .

.68 .

Figure J-98 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
8 : . .
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Figure J-§9 Map of the cosfficlent of variation of the rate and the standard deviation of
the b-value for the study region under the seismotectonic zonation, with narrow
interpretation of PEZ; Case B magnitude weights

Figure J-100 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
4 . )

Figure J-101 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
2

J-100

J-101

J-102

Figure J-102 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
3 .

J-103




Figure J-103 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization

4

Figure J-104 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
5

J-104

J-105

Figure J-105 Map of the rate and b’-vélue for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
6 ) .

Figure J-106 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
T . :

Figure J-107 Map of the rate and b-value for the stfxdy re~g.ion under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
8 . . .

Figure J-108 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the-study region under the'seismotectonic zonation, with narrow
“interpretation of PEZ; Case E magnitude weights
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J-108

Figure J-109 Map of the rate and b-value for the study region under the seismotectonic
2onation, with narmow interpretation of PEZ; Case A magnitude weights: Realization
1 ; :

Figure J-110 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
2 .

J-110

J-111

Figure J-111 Map of the rate and b-valueAfor the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization

112

Figure J-112 Map of the rate and b-value for the study region under the seismotectonic
2onation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
4

J-113

Figure J-113 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
5

J-114

Figure J-114 Map of the rate and b-value for the study regioﬁ under the‘seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
6

Figure J-115 Map of the rate and lrvaiué ‘for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization

J-115

J-116

Figure J-116 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
N -

Figure J-117 Map of the coefficient of varlation of tﬁe rate and the standard deviation of
the b-value for the study region under the seismotectonic zonation, with narrow

in:erpretation of PEZ; Case A magnitude weights

J-117

J-118

Figure J-118 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
1 Y

Figure J-119 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
2

Figure J-120 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
3 . e .

Figure J-121 Map of the rate and b-vaiue for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
4

J-118

J-120

J-121

J-122 -

Figure J-1'22 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narow lnterpretatlon of PEZ Case B magnitude weights Realization
5

Figure J-123 Map of the rate and b-value for the study region under the seismotectonic.
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
6

J-123

J-124

Figure J-124 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization

J-125

7

Figure J-125 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
8

J-126

Figure J-126 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the seismotectonic zonation, with narrow
interpretation of PEZ; Case B magnitude weights

Figure J-127 Map of the rate and b-value for the study region under the se:smctectomc
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
1.

J-127

J-128

Figure J-128 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
2 ;

J-129

Figure J-129 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
3

1-130

Figure J-130 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
4

J-131

Figura J-131 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
5

J-132

Figure J-132 Map of the rate and b:\}alue for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization

J-133
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Figure J-133 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
7 : . 134
Figure J-134 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
8. ’ J-135
Figure J-135 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the seismotectonic zonation, with narrow
interpretation of PEZ; Case E magnitude weights J-136
Figure J-136 Map of the rate and b-value for the study region under the seismotectonic-
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 1 ...J-137
Figure J-137 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 2...J-138

Figure J-138 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 3 «.J-139
Figure J-138 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 4 ... J-140
Figure J-140 Map of the rate and b-value for the study region under the’seismotectonic .
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 5 ...J-141
Figure J-141 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 6 ...J-142
Figure J-142 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 7 ... J-143
Figure J-143 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case A magnitude weights: Realization 8 ... J-144

Figure J-144 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the seismotectonic zona'aon. wnth wide
interpretation of PEZ; Case A magnitude weights J-145

Figure J-145 Map of the rate and b-value for the study reglon under the seismotectonic
zonation, with wide interpretation of PEZ; Case B magnitude weights: Realization 1...J-146

Figure J-146 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case B magnitude weights: Realization 2 ...J-147

Figure J~147 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case B magnitude weights: Realization 3 ...J-148

Figure J-148 Map of the rate and b-value for the study region under the seismotectonic
zonation, with wide interpretation of PEZ; Case B magnitude weights: Realization 4 ..,J-149
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