IAEA Safety Standards for protecting people and the environment ## Safety of Nuclear Power Plants: Design Specific Safety Requirements No. SSR-2/1 (Rev. 1) corrected by appropriate measures. Application of the concept of defence in depth throughout design and operation provides protection against anticipated operational occurrences and accidents, including those resulting from equipment failure or human induced events within the plant, and against consequences of events that originate outside the plant. ## 2.13. Paragraph 3.31 of the Fundamental Safety Principles [1] states that: "Defence in depth is implemented primarily through the combination of a number of consecutive and independent levels of protection that would have to fail before harmful effects could be caused to people or to the environment. If one level of protection or barrier were to fail, the subsequent level or barrier would be available.... The independent effectiveness of the different levels of defence is a necessary element of defence in depth." ## There are five levels of defence: - (1) The purpose of the first level of defence is to prevent deviations from normal operation and the failure of items important to safety. This leads to requirements that the plant be soundly and conservatively sited, designed, constructed, maintained and operated in accordance with quality management and appropriate and proven engineering practices. To meet these objectives, careful attention is paid to the selection of appropriate design codes and materials, and to the quality control of the manufacture of components and construction of the plant, as well as to its commissioning. Design options that reduce the potential for internal hazards contribute to the prevention of accidents at this level of defence. Attention is also paid to the processes and procedures involved in design, manufacture, construction, and in-service inspection, maintenance and testing, to the ease of access for these activities, and to the way the plant is operated and to how operating experience is utilized. This process is supported by a detailed analysis that determines the requirements for operation and maintenance of the plant and the requirements for quality management for operational and maintenance practices. - (2) The purpose of the second level of defence is to detect and control deviations from normal operational states in order to prevent anticipated operational occurrences at the plant from escalating to accident conditions. This is in recognition of the fact that postulated initiating events are likely to occur over the operating lifetime of a nuclear power plant, despite the care taken to prevent them. This second level of defence necessitates the provision of specific systems and features in the design, the confirmation - of their effectiveness through safety analysis, and the establishment of operating procedures to prevent such initiating events, or otherwise to minimize their consequences, and to return the plant to a safe state. - (3) For the third level of defence, it is assumed that, although very unlikely, the escalation of certain anticipated operational occurrences or postulated initiating events might not be controlled at a preceding level and that an accident could develop. In the design of the plant, such accidents are postulated to occur. This leads to the requirement that inherent and/or engineered safety features, safety systems and procedures be capable of preventing damage to the reactor core or preventing radioactive releases requiring off-site protective actions and returning the plant to a safe state. - (4) The purpose of the fourth level of defence is to mitigate the consequences of accidents that result from failure of the third level of defence in depth. This is achieved by preventing the progression of such accidents and mitigating the consequences of a severe accident. The safety objective in the case of a severe accident is that only protective actions that are limited in terms of lengths of time and areas of application would be necessary and that off-site contamination would be avoided or minimized. Event sequences that would lead to an early radioactive release or a large radioactive release³ are required to be 'practically eliminated'. - (5) The purpose of the fifth and final level of defence is to mitigate the radiological consequences of radioactive releases that could potentially result from accidents. This requires the provision of adequately equipped emergency response facilities and emergency plans and emergency procedures for on-site and off-site emergency response. - 2.14. A relevant aspect of the implementation of defence in depth for a nuclear power plant is the provision in the design of a series of physical barriers, as well as a combination of active, passive and inherent safety features that contribute to the effectiveness of the physical barriers in confining radioactive material at specified locations. The number of barriers that will be necessary will depend upon the initial source term in terms of the amount and isotopic composition of ³ An 'early radioactive release' in this context is a radioactive release for which off-site protective actions would be necessary but would be unlikely to be fully effective in due time. A 'large radioactive release' is a radioactive release for which off-site protective actions that are limited in terms of lengths of time and areas of application would be insufficient for the protection of people and of the environment. ⁴ The possibility of certain conditions arising may be considered to have been 'practically eliminated' if it would be physically impossible for the conditions to arise or if these conditions could be considered with a high level of confidence to be extremely unlikely to arise.