玄武岩ガラスの長期溶解速度の推定:富士火山地域の例

鹿園直建* 瀧野晶嗣*

富士山起源の黒ぼく土の化学組成、鉱物組成、物理的性質についての研究を行った. 主な一次構成物質は、火山ガラ スであり、二次鉱物はアロフェン、ハロイサイトである. この風化の順序は、火山ガラス→アロフェン→ハロイサイト である. 相対的元素の移動度は、Na、Ca>K>Mg>P>Si>Ti, Fe>Al>Mn である. 溶解・沈殿カイネティックス-流 動モデルにもとづき、土壌水のシリカ濃度の深さに対する変化を求めた. この計算を行うために、降水量、火山灰、堆 積速度、火山ガラスのサイズ、玄武岩ガラスの溶解度、土壌の空隙率、比重のデータ値を与えた. この計算結果と分析 値とを比較することで、玄武岩ガラスの溶解速度が 10⁹⁴~10⁹² (mole Si m² s⁻¹)と求められた. この推定値と従来の実 験値は一致している.

Keywords:玄武岩ガラス,溶解速度,高レベル放射性廃棄物,ガラス固化体,地層処分,黒ぼく土,カイネティックス.

Bulk compositional, mineralogical and physical properties of weathered basaltic ash soil ("Andisol") derived mainly from Mt.Fuji were studied. Mineralogical studies revealed that the dominant primary material and weathering products are volcanic glass, allophane and halloysite and the sequence of weathering is volcanic glass \rightarrow allophane \rightarrow 10Å halloysite \rightarrow 7Å halloysite. X-ray fluorescence analysis indicates that the relative elemental mobilities during the weathering is Na, Ca>K>Mg>P>Si>Ti, Fe>Al>Mn. The trends of soilwater chemistry (H₄SiO₄ concentration) with depth were calculated based on dissolution -precipitation kinetics – fluid flow coupling model. In order to calculate the trends, the data on present-day annual rainfall, solubility of basalt glass, porosity and specific weight of soil, deposition rate of volcanic ash and grain size of volcanic glass were used. The calculated results were estimated to be 10^{-9.4} - 10^{-9.2} (mole Si m⁻² s⁻¹). This value is consistent with previous experimental dissolution rate constant of basalt glass was estimated to be 10^{-9.4} - 10^{-9.2} (mole Si m⁻² s⁻¹).

Keywords : basalt glass, high level nuclear waste, waste glass, geological disposal, andisol, kinetics

1 緒言

地下処分場に埋設された高レベル放射性廃棄物体から の放射性核種の運搬、移動は、主としてガラス固化体が地 下水によって溶解することにより生じる. したがって、ガ ラス固化体の溶解速度を正確に知ることが重要である.そ のために、今までにガラス固化体の水溶液による溶解実験 が多くなされてきた[1]. また, ガラス固化体中の SiO2含 有量が玄武岩質ガラスのそれと近いために,玄武岩質ガラ スの溶解実験が多く行われてきた[2,3]. この玄武岩質ガラ スは,ガラス固化体の性質と似ており,廃棄物がガラス固 化体のよいナチュラルアナログと考えられている[4-6]. そ して,これらの実験的研究によって得られた溶解速度デー タをもとにして、ガラス固化体からの Si や放射性核種の 浸出速度を求め, それらをもとにして, 地下水による放射 性核種運搬に関するシミュレーションがなされている.し かしながら、ここで問題となるのは、実験データは短期間 で得られたものであるが、ガラス固化体の溶解に関しては、 長期間(10 万年位先まで)についての評価をしなければ いけない点にある.したがって、実験データの妥当性の検 討が必要である.

この長期間の放射性核種移行評価は、シミュレーション とともに、ナチュラルアナログ研究によってなされている. しかしながら、この玄武岩ガラスの溶解速度に関するナチ ュラルアナログ研究は少ない.玄武岩ガラスの変質速度に

ついての研究は,海底の水中自破砕玄武岩,氷河の下の水 中自破砕玄武岩についてなされているが,変質速度は大き くばらつく(0.001~30µm/千年).しかしながら,これ らの研究は,古い時代の玄武岩(数万~数十万年前)を対 象としたもので,生成条件がはっきりしていないという問 題があげられている[7].

そこで,新井ほか(1990)[7],湯佐ほか(1990)[8]は, 新しい時代で年代のはっきりしている富士玄武岩質ガラ ス,大島玄武岩質ガラスの風化変質に関するナチュラルア ナログ研究を行い,ガラス表面の変質層の厚さより,玄武 岩ガラスの浸出速度を求め,廃棄物ガラス固化体の浸出速 度とほぼ等しいことを示した.湯佐ほか(1991)[8]では, ガラスの溶解,変質層の生成に関し,マスバランス法をも とに,水質を求めている.

本研究は,湯佐ほか(1991)[8]と同じ富士玄武岩質ガ ラスを対象としているものの以下の点で研究法が異なっ ている.

- 1. 玄武岩質ガラスの年代が 7000~200 年前と幅広い期間, また古い時代のガラスも研究対象とした.
- 2. 溶解反応速度,水の流動,玄武岩ガラス(火山灰)の 堆積を考慮したモデルによる解析を行った.

以上のアプローチで,玄武岩質ガラスの長期的溶解速度を 推定することが可能であることが明らかにされたので,こ こに報告をする次第である.

2 富士玄武岩質ガラスの風化

本研究で対象とした地域は,富士山より東方約 40kmの 神奈川県秦野市柳川地域である(Figs.1,2). この富士山地

171

Estimate of long-term dissolution rate of basaltic glass: A case study on Mt. Fuji area by Naotatsu Shikazono (sikazono@applc.keio.ac.jp), Akitsugu Takino 慶應義墊大学理工学部応用化学科 Department of Applied Chemistry, Environmental Geochemistry, Keio University 一种奈川県横浜市港北区日吉 3-14-1

Fig.1 A map showing the sampling site and thickness of pyroclastic fall deposit ejected from Mt. Fuji [9].

Fig.2 A map showing the sampling A and B sites. C site is shown, but the analytical results of the C site is not given in a text.

域には,富士火山より噴出した火山灰が堆積をしており, この火山灰が風化変質を受け,土壌化している.秦野市柳 川の試料採取地点は,山道沿いの露頭で,表層の黒ぼく土 は, 淡色黒ぼく土でローム層は武蔵野ローム層である. 黒 ぼく土のみの土壌断面が露出している地点で試料の採取 を行った. 上部ほど黒色礫が多く, 黒ぼく土層, ローム層 は武蔵野ローム層である. 黒ぼく土のみの土壌断面が露出 している地点 (A 地点) と黒ぼく土からローム層へ変化し ている地点 (B 地点) で採取を行った (Fig.2). 上部ほど 黒色礫が多く, 黒ぼく土層, ローム層ともに褐色軽石が点 在していた. 黒ぼく土からローム層への変化は漸移的であ る.

л di ,

試料の採取は,地表から 30cm のところから 10cm ごと に,分析用擾乱試料と,50ml ステンレス製円筒採土管を 用いて不擾乱試料を採取した.この模式柱状図を Fig.3 に 示す.この試料の年代は,C14 年代より 200~7000 年であ る.

以上の試料に関し,様々な鉱物学的,地球化学的研究を 行った.例えば,帯磁率,乾燥密度,含水比,C14年代測 定,粉末 X 線回析による一次鉱物同定,双眼顕微鏡によ る鉱物同定,EPMA分析,蛍光X線分析を行った.以上の 中で,ここでは鉱物の風化変質,蛍光 X 線分析結果につ いて述べる.他については,別途報告予定である.

一次鉱物の同定は、粉末 X 線回折、顕微鏡観察(双眼 顕微鏡、偏光顕微鏡、反射顕微鏡)、EPMA 分析で行った (Table1). これらによって同定された鉱物は、多い方か ら玄武岩質ガラス (Fig.4 で Black)、長石 (White)、オリ ビン (Olivine)、輝石 (Pyroxene)、石英 (White)、磁鉄鉱 (Magnetite) である. これらの深さによる変化を Fig.4 に 示す. これより玄武岩質ガラスが深さとともに減少してい るといえる.

二次鉱物の同定は,粉末 X 線回折,及び EPMA 分析に て行った.その結果,粘土鉱物(ハロイサイト)が下方程 増加していることがわかった.

また、バルク試料中に含まれている非晶質物質中の Al, Fe を調べるためにシュウ酸溶液法[10]にて行った. バルク 試料に含まれている非晶質物質中の Al と Fe の重量を Al₂O₃, Fe₂O₃に換算して、バルク試料に対する Al₂O₃, Fe₂O₃ 含有量を求めた. これより非晶質物質(アロフェン)が生 成していると考えられる.

以上の結果及び、アロフェンが非晶質であり、アロフェ ンの溶解度の方がハロイサイトの溶解度より大きく、ハロ イサイトの方がアロフェンより安定であることより、主な 溶解反応は、玄武岩質ガラス→アロフェンであり、このア ロフェンがさらにハロイサイトへ変化していることが考 えられる.

バルク試料の主成分組成は、 蛍光 X 線回折分析装置

(XRF)(RIX1000, リガク電機)によって行った.その 結果を Fig.5 に示した.これより,Mg,Ca,Na,Kは, 深さとともに減少しているといえる.一方,Ti,Al,Fe, Mn は下層ほど増加している.以上より,風化が下方ほど 進んでいるといえる.つまり,火山灰が徐々に堆積し,そ のつど土壌形成が進み,これを繰り返していったというこ とが示唆される.また,土壌の年代測定の結果(Fig.6)か ら,下層ほど年代が古いこともこのことを示している.Si は最上層から 80cm 位まで減少傾向で,その後 130cm から 下層で再び増加に転じている.Kは上層 50cm まで多くそ れ以下の層ではあまり変化はみられていない.Pは下層へ の減少傾向が見られる.

以上の鉱物,主成分の変化より以下の反応が進行したこ とが考えられる.

2NaAlSi₃O₈+2H⁺+(n+9)H₂O→2Na⁺+Al₂O₃SiO₂nH₂O (Na-長石) +5H₄SiO₄ (アロフェン)

CaAl₂Si₂O₈+2H⁺+2(n+1)H₂O→Ca²⁺+Al₂O₃SiO₂nH₂O+H₄SiO₄ (Ca-長石)(アロフェン)

Mg₂SiO₄+2H⁺+H₂O→Mg²⁺+H₄SiO₄ (ファヤライト;Mg-オリビン)

MgSiO₃+2H⁺+H₂O→Mg²⁺+H₄SiO₄ (Mg-輝石)

(MO/Al₂0₃)sample /(MO/Al₂0₃)parental rock

ance with Fig.5 The variation of bulk composition for each element ragments, with depth.

Fig.4 The variation of primary material abundance with depth. Black: volcanic glass, Red: lithic fragments, White: feldspar, quartz.

i

Table 1 Chemical composition of silicate minerals.

	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	
Sample	A-1	A-1	A- 1	A-1	A-1	A-1	A- 1	A-8	
SiO ₂	48.344	52.964	55.003	55.970	53.824	56.639	50.221	54 623	
TiO ₂	0.083	0.120	0.463	0.876	0.117	0.692	0.064	0.064	
Al_2O_3	32.835	29.405	23.889	16.758	28.898	20.454	31.138	28 399	
T-Fe ₂ O ₃	0.992	1.197	3.220	6.766	1.217	4,949	1.109	1 261	
MnO	0.000	0.000	0.027	0.181	0.000	0.069	0.120	0.000	
MgO	0.133	0.269	1.865	3.944	0.203	2.310	0.202	0.000	
CaO	16.282	13.650	10.630	9.533	12.912	7.966	14 768	12 689	
Na_2O	2.625	4.104	4.667	4.133	4.427	4 566	3 306	A 771	
K ₂ O	0.034	0.141	0.482	0.645	0.174	0.995	0.086	0.175	
P_2O_5	0.092	0.025	0.101	0.147	0.000	0.192	0.000	0.175	
Total	101.420	101.875	100.347	98.953	101.772	98.832	101.106	102.097	
	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	Feldspar	
Sample	A-8	A-8	A-8	A-8	A-8	A-14	A-14	A-14	
SiO_2	55.009	54.152	47.679	54.265	53.168	52.079	47,183	47,152	
TiO ₂	0.066	0.035	0.084	0.047	0.044	0.067	0.000	0.040	
Al_2O_3	29.198	27.106	34.157	30.131	29.871	28.935	31.805	31.781	
T-Fe ₂ O ₃	1.255	0.638	0.650	0.492	0.721	1.096	0.969	0 992	
MnO	0.000	0.000	0.000	0.000	0.000	0.068	0.034	0.000	
MgO	0.153	0.037	0.134	0.023	0.051	0.182	0.119	0.146	
CaO	12.478	10.153	17.592	12.858	12.695	13.671	16.221	16 500	
Na ₂ O	5.239	6.231	1.750	5.264	5.173	4.015	2.257	2.377	
K ₂ O	0.200	0.304	0.035	0.129	0.135	0.125	0.024	0.039	
P_2O_5	0.072	0.025	0.031	0.044	0.000	0.000	0.000	0.000	
Total	103.670	98.681	102.112	103.253	101.858	100.238	98.612	99.027	
	Olivine	Olivine	Olivine	Olivine	Olivine	Olivine	Olivine	Olivine	
Sample	A-1	A-1	A-1	A-8	A-8	A-8	A-8	A-14	
SiO ₂	38.319	37.015	38.029	37.311	39 650	39 251	38 211	35.030	
TiO_2	0.053	0.053	0.087	0.037	0.032	0.033	0.041	0.010	
Al ₂ O ₃	0.083	0.234	0.062	0.100	0.039	0.037	0.041	0.019	
T-Fe ₂ O ₃	23.189	26.678	24.680	22.029	22.576	22 558	22 481	25 231	
MnO	0.410	0.364	0.426	0.259	0 320	0 307	0 333	0.414	
MgO	27.701	34.644	36.732	40.366	41 115	40 552	38 348	36 172	
CaO	0.220	0.197	0.195	0.203	0.215	0.186	0 184	0.274	
Na ₂ O	0.029	0.044	0.035	0.000	0.020	0.038	0.007	0.016	
K ₂ Õ	0.007	0.000	0.012	0.015	0.002	0.000	0.005	0.018	
P_2O_5	0.021	0.038	0.029	0.057	0.000	0.000	0.023	0.000	
Total	100.032	99.267	100.287	100.377	103.969	102.962	99.681	97.195	
	Glass	Glass	Glass	Glass	Glass	Glass	Glass	Glass	Glass
Sample	A-1	A-1	A-1	A-1	A-1	A -1	B -1	B- 1	B-1
SiO ₂	51.803	54.497	54.359	55.621	52.233	56.658	53.809	56 739	52 174
TiO ₂	2.291	2.078	2.379	2.246	1.809	2.476	2.268	2.255	1 023
Al_2O_3	12.526	13.063	12.366	12.896	7.397	10.855	12.743	13.180	19 429
T-Fe ₂ O ₂	13.549	14.274	13.363	12.275	13.390	11.386	11.355	10 862	7 269
MnO	0.195	0.240	0.222	0.200	0.373	0.214	0.232	0.259	0 176
MgO	4.019	2.970	4.135	4.047	12.898	2.345	3.371	3,015	2.893
CaO	8.168	8.325	7.780	8.221	12.067	5.772	6.551	6.051	9 953
Na ₂ O	2.719	1.615	2.047	2.604	0.879	1.973	2.074	2.011	2.989
K ₂ Õ	1.214	1.348	1.406	0.978	0.517	1.913	1.608	1.981	0.670
P_2O_5	0.415	0.384	0.405	0.378	0.258	0.606	0.415	0.519	0.145
Total	96.899	98.794	98.462	99.466	101.821	94.198	94.426	96.872	96.721

Fig.6 The relationship between ¹⁴C age and depth. Open circle inclicates the ¹⁴C data obtained.

Fe₂SiO₄+2H⁺+H₂O→Fe²⁺+H₄SiO₄ (フォーステライト ; Fe-オリビン)

FeSiO₃+2H⁺+H₂O→Fe²⁺+H₄SiO₄ (Fe-輝石)

 Fe^{3+} (アロフェン) +3H₂O→Fe(OH)₃+3H⁺

すなわち, Na, Ca, Mgは, 長石, オリビン, 火山ガラ スから溶脱されていく. Al はこれらの溶解により水に溶 けるが, これがアロフェン, ハロイサイトとして固定され る.

Fe も火山ガラス, ファヤライト, 輝石から溶解するが, これがアロフェン, 水酸化鉄として, 固定される. Mn, Ti についても Fe と同様な挙動が考えられる. Si は 60cm までの減少量が大きく, それ以外の下の層では 130cm ま ではやや減少するが, 減少幅は少ない. これは, はじめは ガラス, 長石, オリビンの溶解により, Si が溶脱され, こ れがアロフェンとして固定されると思われる. そして, こ のアロフェンがハロイサイトへと変化する.

3 溶解カイネティックスー流動モデルによるガラスの溶解速 度の推定

以上のような様々な溶解-沈殿反応が考えられる.しか し、玄武岩ガラスが一次物質の中でもっとも多く、アロフ エンがはじめに生成される二次物質であるので、以下の反 応をもとに火山ガラスの溶解反応の推定を行う. NaAlSi₃O₈+H⁺+(1/2)(n+9)H₂O→ (Na-長石) Na⁺+5/2H₄SiO₄+1/2Al₂O₃·SiO₂·nH₂O (アロフェン)

2CaAl₂Si₂O₈+4H⁺+4(n+1)H₂O→ (Ca-長石) 2Ca²⁺+2H₄SiO₄+2Al₂O₃·SiO₂·nH₂O (アロフェン)

バルク試料の Na:Ca は約 1:2 であるので, Na 長石成分: Ca 長石成分=1:2 の反応を考えた.

土壌水中の H₄SiO₄ 濃度の時間変化は以下で表される [11].

 $dC/dt = k(A/M)(C_e-C) / C_e + q/V(C_i-C)$ (1)

ここで、C:土壌水中の H₄SiO₄ 濃度(モル/kg·H₂O), t:時間(秒),k:溶解速度定数(モル/m²秒),A:火山 ガラスの表面積(m²),M:水溶液の質量(kg),C_c:H₄SiO₄ 平衡濃度(モル/kg·H₂O),q:土壌水体積流量(m³),C_i: 水溶液中の初期 H₄SiO₄ 濃度.

ここで考えたモデルを Fig.7 に示す.まず,雨水が降り, 地表から火山灰層 (リザバー1),そして,その下方のリザ バー2 に移動する.このリザバー2 は,リザバー1 が堆積 する以前に堆積したものである.ここで,リザバーユニッ トとして,0.1m (33.3 年で堆積)を考える.そして,土 壌水はリザバー2 と反応し,下方へ移動し,アロフェン

Fig.7 Dissolution (volcanic glass)-precipitation (allophane) kinetics-fluid flow model.

が生成する.この間に地表では火山灰が同じ堆積速度で堆積していく.

各リザバー内での定常状態(dC/dt=0)を考えると、リ ザバー(n-1)とリザバー(n)の関係は

 $C_{n} = [\{k(A/M) + qC_{n-1} / V\}] / \{k(A/M)C_{eq} + q/V\}$ (2)

ここで、C_{n-1}: リザバー (n-1) の土壌水中の H₄SiO₄ 濃 度 (n=1-300)、C_n: リザバーn の土壌水中の H₄SiO₄ 濃度.

- 上の式を解いて、C と深さの関係を導く. そのために、 上式を支配している以下のパラメータ値を与える.
- 1. 火山灰の堆積速度は、C14 年代より 0.01m/33.3 年と求めた.
- 2. 年間の降水量を1700mmとした. これは, この地域の 現在の降水量である. 1万年前より現在までの日本列島 の気候変動についてはよく調べられている [15]. これ よりこの間の降水量は現在に比べて, 1±0.5 である.
- 3. この降水量より土壌水の下方へ浸透する体積流量を 1.7m³/年とする. これは, 1m²の地表面積, 空隙率を 70%, 3.3 年の火山灰の体積とし求められた. ガラスの組成を Na_{0.33}Ca_{0.67}Al_{1.67}Si_{2.33}O₈とすると分子量は 272.89 で Si, 1 モルあたりの質量は 117 となる. したがって, 溶解する 火山ガラスの重量%は, $X_{n+1} = (C_{n+1} - C_n)1700 \times$ 33/7500×100 + X_n (1 $\leq n \leq$ 300), 火山ガラスの重量%は, Y_n (wt.%) = 100 - Y_n .

 火山ガラスの H₄SiO₄ 平衡濃度=10^{-2.71} モル/kg·H₂O で ある.以上のパラメータ値を与え、(2)式を解いた結果 を Fig.8 に示す.地下水分析値(Table2)に合う理論曲 線に対する k(A/M)は、10^{-7.7}~10^{-7.5} である.なお、k は pH 依存性があるが、この土壌水の pH は、6~7.5 であ り、この pH 範囲では、k はほぼ一定となる.

富士火山(宝永火山)から噴出したテフラの火山ガラス の粒度分布[12]より平均的な粒度は 200 μm である.

この値及び空隙率を 70%とし,火山ガラスが球体と仮定 し, A/M と r 粒子半径)との関係式[12]より A/M=50 とな る. この値を用いて logA/M と logk の関係より, logk =-9.4 ~-9.2 と求められる. 過去 16,000 年平均温度を 15℃±5℃ [14]とし, 求めた logk が Fig.7 に示してある.

Figure9 は、実験的に求められた玄武岩質ガラスの溶解 速度定数をまとめたものである[15]. 今回のモデルにより 求められた玄武岩質ガラスの溶解速度定数は、今までの実 験データとほぼ一致しているといえる.

また,この溶解速度定数は,実験的に求めたガラス固化 体の溶解速度定数[16,17]と矛盾がない.なお,この溶解速 度定数は,Berger et al. [15]のいう初期溶解速度と長期的溶 解速度の中間的値をとる.ここで,初期溶解速度は,実験 初期の値であり,長期的溶解速度は,長期的実験に対する ものである.溶液中の Si 濃度が高くなると,溶解速度は 遅くなる.天然の場合は,この長期的溶解速度に近いと考 えられるが,今回は中間的値となった.

Fig.8 The relationship between SiO₂ concentration of soilwater and depth calculated based on dissolution-precipitation kinetics-fluid flow coupling model.

Depth(cm)	1A	1 B	2A	2B	3A	_3B	
Rainwater	4.49						
20	6.55	6.47	6.46	5.76	5.90	6.03	
40	6.59	6.61	7.94	7.33	6.04	6.11	
60	6.71	6.76	7.98	7.56	6.02	6.14	
80	6.90	6.71	6.69	6.37	5.99	6.24	
100	6.45	6.05	6.83	6.66	6.08	6.40	
120	6.56	6.56	6.54	6.62	6.65	6.73	
140	6.63	6.86	6.48	6.55	6.60	6.67	

Table 2 Chemical composition of soilwater.

H₄SiO₄(mg/l)

pН

Depth(cm)	1A	1B	2A	2B	3A	3B		
Rainwater	1.2							
20	16.25	42.59	14.95	16.75	31.63	22.85		
40	23.50	37.50	24.18	23.30	33.70	27.15		
60	28.00	10.47	25.38	24.18	40.45	22.78		
80	42.00	10.63	29.45	26.00	29.60	34.25		
100	42.50	39.50	22.45	21.48	30.68	23.75		
120	34.50	37.50	26.63	14.58	30.95	23.38		
140	30.25	43.88	28.83	17.40	22.38	21.38		

4 まとめと問題点

本論文の研究結果をまとめると以下の通りとなる.

(1)富士山地域の黒ぼく土の主な鉱物組成は、火山ガラス、 オリビン、長石、輝石である.この中で、火山ガラスが もっとも多いが、深くなるにつれ減少する.その他のも のは逆に上昇する.このことは、火山ガラスが次第に溶 解したことを示す.

(2)二次鉱物としてアロフェン、ハロイサイトがある.

- (3)主化学成分組成変化として、深さとともに減少する元素は、Ca、Na、Mg、上昇または変化のないものは、Al、Ti、Fe、Mn である. Si は減少するが、Ca、 Na、Mg ほど減少して行かない. これは Si 鉱物(アロフェン、ハロイサイト)が生成していることを示している.
- (4)この主化学成分変化は、火山ガラス、長石、オリビン、 輝石の溶解、Al, Si, Fe 化合物の沈殿によって説明され る、
- (5)溶解カイネティックス 流動 堆積モデルにより,深 さに対する土壌水の H₄SiO₄ 濃度の変化を導いた.その ために,火山灰堆積速度,リザーバーユニットの堆積, 土壌水の浸透速度,空隙率,粒子サイズを与えた.
- (6)この理論曲線と土壌水濃度を比較することにより,溶 解速度定数として,k=10^{-9.4}~10^{-9.2}と求めた.この推定 値は,従来の玄武岩質ガラス,廃棄物ガラスの溶解速度 定数とほぼ一致している.

(7)したがって、本研究法が、長期的溶解速度を求める方法として、有効であり、短期的になされている実験データを長期的問題へと拡張することが妥当であることを示すことが出来たといえる。

今後の主な問題として、以下があげられよう.

(1)より長期(7,000年以上)の玄武岩質ガラスの溶解速度の推定を行い、本モデルが、さらに長期の溶解にあては

Fig.9 Arrhenius plot of basalt glass dissolution rates experimentally determined at nearly nentral pH (Berger et al., 1994) and basalt glass dissolution rate estimated by the present work.

めることが出来るのかの検討を行う.

- (2)空隙率,粒子サイズの変化といった時間的変化を考慮 したモデルの開発が必要である.
- (3)本研究の計算で用いたパラメータ値(空隙率,粒子サ イズ,比表面積ほか)の妥当性の詳しい検討が必要であ る.

謝辞

廃棄物ガラス固化体,玄武岩質ガラスの溶解速度に関す る文献をご教示いただいた核燃料サイクル開発機構 三 ツ井誠一郎氏,九州大学 稲垣八穂広氏に感謝致します.

参考文献

- Ohe, T., Tsukamoto, M., Kinoshita, M., Inoue, T.: Analysis of high-level waste glass performance by the physical and geochemical simulation code Strag 4. *Waste Management*, 11, 191-203(1991).
- [2] Berger, G., Schott, J., Guy, C.: Behavior of Li,Rb and Cs during basalt glass and olivine dissolution and chlorites, smectites and zeolites precipitation from seawater: Experimental investigations and modelization between 500°C and 300°C. *Chem. Geol.* **71**, 297-312(1988).
- [3] Berger, G., Schott, J., Loubet, M.: Fundamental process controlling the first stage of alteration of a basalt glass by seawater: an experimental study between 200°C and 320°C. *Earth Planet. Sci. Lett.*, 84, 431-445(1987).
- [4] Lutze, W., Mallow, G., Ewing, R.C., Jercinovic, M.J., Keil,K.: Alteration of basalt glasses: Implications for modelling the long-term stability of nuclear waste glasses, *Nature*, **314**, 252-255(1985).
- [5] Ewing, R.C., Jercinovic, M.J.: Natural analogues: their application to the prediction of the long-term behavior of nuclear waste forms. In:, *Scientific Basis for Nuclear Waste Management X, Mat. Res. Soc.* Symp Ser., (Bates, J.K. and Seefeldt, W.B. ed.) Pittsburgh, Pennsylvania, 67-86(1987).
- [6] Abdelouas, A., Crovisier, J.-L., Lutze, W., Fritz, B., Mosser, A., Muller, R.: Formation of hydrotalcite-like compounds during R7 T7 nuclear waste glass and basaltic glass alteration. *Clay. Clay Miner.*, **42**, 526-533(1994).
- [7] 新井隆,湯佐泰久,亀井玄人:廃棄物ガラスの長期浸 出挙動に関するナチュラルアナログ研究-富士および 伊豆大島の火山ガラスの風化変質-. PNCTN8410 90-004.52p.
- [8] 湯佐泰久,新井隆,亀井玄人,高野仁:廃棄物ガラスの長期浸出挙動に関するナチュラルアナログ研究,富 士および伊豆大島の火山ガラスの風化変質.日本原子 力学会誌 33,76-91(1991).
- [9] Machida, H., Moriyama, A.: The development of Mt.Fuji and Mt.Hakone volcanoes analyzed from

tephrochronological study in the Ooiso hills. *Geographical Review of Japan*, **41-4**, 241-257(1968).

- [10]Hayasi, T., Ikeda,H.: Dissolution of allophane by acid oxalate solution. Clay Science, 4, 205-211(1974).
- [11]鹿園直建,藤本光一郎: 珪酸塩鉱物の水溶液に対する 溶解速度.地球化学,30,91-97(1996).
- [12]Yamada, I., Shoji, S.: Relationships between particle size and mineral composition of volcanic ashes. Tohoku, J. Agr. Res. 26, 7-10.
- [13]Rimstidt, D., Barnes, H.L.: The kinetics of silica-water reactions. *Geochim. Cosmochim. Acta*, 54, 1941-1955(1980).
- [14]Sakaguchi, Y.: Climatic variability during the Holocene epoch in Japan and its causes. *Geogr. Rev. Japan* 34, 259-268(1961).
- [15]Berger, G., Claparols, C., Guy, C., Decux, V.: Dissolution rate of a basalt glass in silicate-rich solutions; Implications for long-term alteration. *Geochim. Cosmochim. Acta*, 58, 4875-4886(1994).
- [16]Crovisier, J.L., Fritz, B., Granbow, B., Eherhart, J.P.: Dissolution of basaltic glass; experiments and thermodynamic modelling. In: *Scientific Basis of Nuclear Wast Management; MR S Sym. Proc.* (ed. L .Weme); 50, 273-280(1985).
- [17]Granbow, B., Lutze, W., Muller, R.: Empirical dissolution rate law for the glass R7T7 contacting halite and silica-saturated brines. In: *Scientific Basis for Nuclear Waste Management XV*, 143-150, Sombret C.G. (ed.), Material Research Society, (1992).