論説

火山第51巻(2006) 第5号291-309頁

阿蘇火山の地盤変動とマグマ溜まり --長期間の変動と圧力源の位置---

須藤靖明*・筒井智樹**・中坊
 真***・
 吉川美由紀****・吉川
 慎*・井上寛之*

(2005年12月26日受付, 2006年7月20日受理)

Ground Deformation and Magma Reservoir at Aso Volcano: Location of Deflation Source Derived from Long-term Geodetic Surveys

Yasuaki Sudo*, Tomoki Tsutsut**, Makoto NAKABOH***,

Miyuki Yoshikawa****, Shin Yoshikawa* and Hiroyuki INOUE*

So far the ground deformation associated with a magma supply system of Aso Volcano had not been discussed because any clear signals in ground deformations and volcanic earthquake activity had been hardly observed near the Nakadake active crater during its activity enhancement cycles. In this article, however, the deflation source and magma supply system is investigated by the long-term geodetic surveys. The secular subsidence is observed in the Kusasenri area about 3 km west of the Nakadake active crater from the 1951's levelling survey in compiled levelling surveys along the Bouchuu-line since 1937. While the ground deformation near the active crater has been obscure. The source of this deflation near the Kusasenri area is estimated on the basis of the spherical pressure source model through the non-linear least square method with using recent survey data which include the Bouchuu-line and an extended survey route. The deflation source is located beneath the Kusasenri area at about 5 km depth. However, recent volume changes at the spherical deflation source are smaller than before 1959. The location of the deflation source coincides with the low P- and S-wave velocity body in the 3D seismic velocity structure. This fact supports a hypothesis that the low seismic wave velocity body represents a magma reservoir. Therefore this magma reservoir beneath the Kusasenri area must be connected to the Nakadake active crater. We inferred a rigid conduit in the magma supply system from the obscure ground deformation in the vicinity of the Nakadake crater.

Key words: Aso Volcano, ground deformation, magma reservoir, 3-D seismic wave velocity structure, magma supply system

1. はじめに

多くの活動的な火山において、火山活動の推移にとも なって、特に噴火活動へ移行する時、活動火口のごく近 くで火山性地震の発生頻度の増大や地盤に顕著な変動が

* 〒869-1404 熊本県阿蘇郡南阿蘇村河陽 京都大学大学院理学研究科地球熱学研究施設火山研 究センター

Aso Volcanological Laboratory, Graduate School of Science, Kyoto University, Kawayou, MinamiAso, Aso, Kumamoto 869–1404, Japan

** 〒010-0852 秋田市手形学園町 1-1 秋田大学工学資源学部 Faculty of Engineering and resource science, Akita

University, 1–1, TegataGakuencho, Akita 010–0852, Japan

観測されている(例えば, Malone et al., 1981; McNutt, 1996 など). そしてまた, 噴火中およびその後において も,火山活動にともなう地盤変動が観測され, その結果 からマグマ供給機構との関係が明らかにされつつある

*** 〒869-2232 熊本県阿蘇市赤水大堀 NPO 法人 九州バイオマスフォーラム NPO Kyushu Biomass Forum, Ohhori, Akamizu, Aso, Kumamoto 869-2232, Japan **** 〒869-2232 熊本県阿蘇市赤水 1930-1 (財)阿蘇火山博物館 Aso Volcano Museum, 1930-1 Akamizu, Aso, Kumamoto 869-2232, Japan

Corresponding author: Yasuaki Sudo e-mail: yas@aso.vgs.kyoto-u.ac.jp

(例えば, Dieterich and Decker, 1975; Murray et al., 1995 など).

阿蘇火山における地盤変動の観測は,京都大学火山研 究所(現京都大学火山研究センター)によって1932年6 月に研究所本館に傾斜計を設置してから始まり(Sassa, 1935),1937年から阿蘇登山道路(坊中線)で水準測量が 実施されてきた.吉川(1954)は1937年(第1回)測量 から1953年(第7回)測量までの水準測量結果から阿蘇 火山周辺の地盤変動を解析し,火山活動の活動期で Sassa (1935)の区分した第1種火山性微動(周期0.8~ 1.5秒)の年平均振幅が大きな場合は隆起の傾向がみら れ,逆に平穏期には沈降の傾向がみられると指摘した. 菊池・他(1984)は、その後の1958年(第8回)から 1981年(第12回)までの水準測量をまとめて報告して いる.それによると、中岳火口列に対して直角方向の水 準点(中岳火口の西の水準点;AVL-12,13,14)で変化 量が大きいと指摘している.

このように阿蘇火山においては繰り返し水準測量がな され、地盤変動の特徴が報告されてきたが、マグマ供給 機構に関する議論は未だ行われていない.また、火山活 動にともなう地盤の隆起や沈降を生じさせる力源の位置 も特定されていない.そこで、我々は、阿蘇火山におけ る地盤変動からマグマ供給機構を明らかにするために、 1997年・1998年・1999年・2004年に水準測量を実施し た.

本報文では、1937年から現在までのおよそ70年間の 長期に亘って繰り返し実施されてきた水準測量結果を基 に、阿蘇火山における地盤変動をもたらす力源の位置を 求め、マグマ溜まりとの関連を議論する.

2. 阿蘇火山の火山活動にともなう諸現象

阿蘇火山における地盤変動からマグマ供給機構を明ら かにするには、阿蘇火山の火山活動の特徴を把握するこ とが重要である.そこで、阿蘇火山における地盤変動を 論じる前に、阿蘇火山の火山活動の特徴を述べる.

阿蘇火山の最近の火山活動の特徴は, 1940年代以降活 動火口が中岳第1火口に限定され,数年間隔で火山活動 の最盛期を迎えていることである.これまで観測されて きた火山活動の推移にともなう表面現象は須藤 (2001, 2004)で詳しく述べてあるように,Fig.1およびその説 明に示されるような過程が繰り返しみられる.すなわ ち,湯だまり・噴湯現象・土砂噴出・水蒸気爆発・火口 底露出・赤熱現象・開口活動・火山灰噴出・火炎現象・ 鳴動・赤熱噴石・火映現象・火柱現象・ストロンボリ式 噴火・水蒸気爆発・湯だまりという過程でこれまで火山 活動が推移してきている.また噴火活動期でない時も常 に二酸化硫黄に卓越した火山ガスが噴煙と共に大量に放 出されていることも特徴的なことである.

阿蘇火山においては、中岳第 1 火口の表面活動の推移 にともなって大きな変化が観測されるのは、火山性微 動・火山ガス・地磁気であり、中でも火山性微動の振幅 や周期の変化は中岳第 1 火口の表面活動と関連して最も 顕著に観測される (京都大学理学部火山研究施設, 1989a, 1989b, 1990a, 1990b, 1990c, 1991a, 1991b, 1991c, 1992, 1993). このため、阿蘇火山の火山活動は古くから火山性 微動の発生頻度と振幅増減を用いて評価されてきた. 代 表的な例として、Sassa (1935, 1936)の一連の報告があ り、それは阿蘇火山の火山活動についての古典的論文で ある. その後も火山性微動から火山活動を報告したもの が多数に上る (菊池, 1962, 1964; 菊池・迫, 1968; 久保 寺, 1964; 下鶴・他, 1958; 須藤, 1978, 1984, 1985; Sudo, 1988; 和田・他, 1970; Wada *et al.*, 1970; 吉川・狐崎, 1958).

しかし、中岳火口直下で発生する火山性地震の震源位 置については噴火活動期も非活動期も大きな変化が観測 されず(小野, 1978, 1985, 1987;小野・外, 1984;京都 大学理学部火山研究施設, 1989a, 1989b, 1990a, 1990b, 1990c, 1991a, 1991b, 1991c, 1992, 1993),また,地盤変動 や重力についてもこの中岳の活動火口付近では大きな変 化が観測されていない(菊池・他, 1978, 1984;菊池・小 野, 1985;久保寺・他, 1974, 1978, 1984;久保寺・里村, 1985;小野・迫, 1978, 1984;須藤・吉川, 1995). さら に、中岳火口周辺以外の中央火口丘地域では1978年9 月 19日に杵島岳直下で発生した群発地震を除くと全般 に地震活動が低調である.

すなわち,阿蘇火山では,常時二酸化硫黄の卓越した 火山ガスが大量に噴出し,火山活動の推移にともなって 表面活動・火山性微動・火山ガス・地磁気に大きな変化 が観測されるが,火山性地震の震源位置や地盤や重力に 大きな変化が観測されていないことが特徴となってい る.

従って、阿蘇火山では活発な火山活動期をはさんで繰 り返し水準測量がなされていたのにもかかわらず、地盤 変動の特徴から地盤の隆起や沈降を生じさせる力源の位 置やマグマ供給機構に関する議論がされてこなかったの は、上に述べたような火山活動の推移に対応すると考え られる地盤の顕著な変動が一時期(1958年から1959年) を除いてこれまでみられていなかったためであろう.

3. 阿蘇火山における水準測量

阿蘇火山における水準路線を Fig. 2 に示す.本報文であつかう水準路線は 2 つある.ひとつは, Fig. 2 で阿蘇

PROCESS OF VOLCANIC ACTIVITY AT ASO NAKADAKE CRATER

谷南部の坊中を起点として中央火口丘の北斜面を登り, 草千里・古坊中を経て中岳火口に至る阿蘇登山道路坊中 線 (Bouchuu-line) に沿った全長約 17 km・標高差約 740 mの水準路線で,京都大学によって約 1 km 間隔に水準 点 (AVL-1-AVL-17) とその補助点 (AVL-XX 1/2) が設 置されている.以降この水準路線を坊中線と呼ぶことに する.もうひとつは,国土地理院が阿蘇登山道路吉田線 (Yoshida-line)と同赤水線 (Akamizu-line)の一部に,別 途新たな水準点 (BM10401-BM10415)を 1988 年頃に設 置した水準路線で,その一部区間 (BM10405-BM10408) は先述の坊中線と重複している.以降では水準点 BM 10408-BM10415 および BM10401-BM10405 から構成さ れる水準路線区間を吉田・赤水線と呼ぶことにする.

坊中線の水準測量は,先に述べたように 1937 年から 京都大学によって開始されており,測量回数は,最近に 行われた 2004 年の測量を含めると,これまでに延べ 15 回を数える(菊池・他, 1978, 1984; 菊池・小野, 1985; 吉川, 1954).

この間, 1957年には阿蘇登山道路の改修工事により, 坊中線の水準点 AVL-2から AVL-13までが改埋された ため,それ以前と以後での連続した地盤変動の解析が不 可能となっている.このため,これまでの15回の水準測 量を再度まとめるにあたって,1957年以前と以後を区別 して検討する.また,これ以降に示す水準点の変動の図 においては,道路整備や公園整備などで水準点が破壊さ れたりして,変動値に明らかな異常がみられる場合はそ の水準点の変動値を省いて表示してある.

また,上述した吉田・赤水線では,1989年に国土地理院により初めての水準測量が行われた.このため,1997年(第14回)の水準測量では坊中線の測量に加えて,草千里の南側に水準路線がある国土地理院の吉田・赤水線についても水準測量を行った(第14回測量1997年5月・1997年11~12月・1998年6~7月・1999年3~4

Fig. 1. The process of volcanic activity at Aso Nakadake crater. At the weakly active stage there is a hot and super acid water lake in the crater, with a diameter of about 200 m, a temperature of about 60°C, and a greenish white color. The water level is maintained from groundwater and fumaroles, and does not change. The ingredient responsible for the green color is iron. When the volcano becomes more active, its temperature rises up to the boiling point, evaporation is promoted, and the hot water level decreases gradually, and many mud eruptions (small phreatic explosions) occur intermittently, ejecting hot water and old rock fragments of 5 m diameter or more to distances of up to 1 km outside of the crater. At the bottom of crater many small pits open, with diameters of several meters, ejecting high temperature volcanic gases and ashes, and becoming incandescent. After this a lot of volcanic ash is ejected accompanied by intense rumblings, flames several tens of meters high, and ejection of volcanic rocks. So the vents expand, growing to a size of tens of meters diameter, and eventually cover the entire crater bottom. In this stage a lot of ash is ejected to some tens of kilometers height. The volcanic activity then becomes even more intense and a Strombolian type eruption stage begins. For some weeks or months the volcanic activity is at a high level with violent rumblings, and ejection of many fresh magma fragments and ashes. A Strombolian type eruption becomes gradually weaker and the volcanic activity ceases. The volcanic ash deposited around the crater is washed into the crater by rainwater and the crater wall collapses. Then the bottom of crater is buried and the floor at the crater bottom begins to appear again. A lake covering the whole crater bottom is again gradually formed, as the crater fills with hot water. The water level goes up gradually, and becomes more stable. A phreatic explosion can still occur if there is some power remaining in the volcanic activity. This is the end of the eruption cycle. In this way, as a calm period ensues, the lake becomes green and a cycle is completed. This is one volcanic cycle at Aso Volcano. And at every active stage a lot of volcanic ashes are ejected during the time when new vents are opened. These are the main characteristic of the eruptions of Aso Volcano.

Fig. 2. Index maps of Aso Caldera showing levelling benchmarks and levelling routes with benchmarks at the central cones. Triangles show tops of notable central cones. In the Aso Caldera map, solid circles indicate benchmarks of AVL (Aso Volcanological Laboratory of Kyoto University) and open circles indicate benchmarks of GSI (The Geographical Survey Institute). In the levelling route map, solid circles indicate significant benchmarks and open circles indicate auxiliary benchmarks.

月の4回に亘って測量; 測量期間の中央を考慮してこれ 以後1997 年測量と記述する).

3-1 1937 年から 1953 年までの地盤変動

まず 1957 年の水準点改埋以前に行われた水準測量結 果を Fig. 3 に示す. ここでは 1937 年の第1回の測量を 基準として,その後に行われた 1953 年 (第7回)の測量 までの各測量結果から水準点ごとに差を求め,水準点 AVL-1を不動として表現してある.

1942年の第5回測量までとその後の1951年(第6回),1953年(第7回)の測量とでは、明らかに変動の様子が異なる.すなわち、1942年(第5回)までの測量結果では、全水準点において大きな変化がみられず、強いて述べるなら全体で隆起の傾向にある.しかし、1951年(第6回)以降からは水準点 AVL-11を含むその前後の

阿蘇火山の地盤変動とマグマ溜まり一長期間の変動と圧力源の位置一

Fig. 3. Vertical displacements observed along the levelling route of Bouchuu-line in Aso central cones. The benchmark of AVL-1 was held fixed. Displacements during the period from 1937 to 1953 were calculated by comparing results of the 1937's survey.

水準点で沈降の傾向に大きく変化している. この第6回 以後の変動の傾向は,後に述べる第9回(1959年)水準 測量からの傾向と同じである.

1942年(第5回)と1951年(第6回)の間にはほぼ10 年間の時間が経過している. この間の阿蘇火山中岳第1 火口の火山活動で主な事象は,1943年6月・12月・ 1946年4-7月・1947年5-12月・1948年3-9月・1949 年3-4月・1949年12月-1950年2月・1950年4月-1951年9月で,火山灰や赤熱噴石の噴出などが生じてい る. 中でも1950年4月には比較的規模の大きい爆発が あった.しかし,このような活発な火山活動は,それ以 前でも以後も生じている現象である.ただ,1937年(第 1回)から1942年(第5回)までは,中岳第1火口には 湯だまりの形成が無く,噴石活動・火山灰噴出活動が繰 り返し生じていたが,1948年頃から静穏期には第1火口 で湯だまりが生じてきたという火山活動の変化がある.

この1942年(第5回)と1951年(第6回)との水準 測量結果の大きな変動(沈降)は、改埋されなかった中 岳第1火口に近い水準点AVL-14(本堂)の地盤変動を みると明らかである.水準点AVL-14は水準点AVL-1 と共に改埋されておらず、1937年の第1回の測量からの 変動をみることができるので、水準点AVL-1を不動と した1937年から2004年までの15回の水準測量結果を Fig.4に示す.ここでは、1937年の第1回測量を基準と して示してある.1937年(第1回)から1942年(第5 回)までは大きな変動が無いが、1942年(第5回)と 1951年(第6回)の間で明らかに大きな変動(沈降)が みられ、その後は1958年(第8回)と1959年(第9回)

Fig. 4. Secular vertical displacements observed at the benchmark AVL-14 near the Nakadake active crater during 67 years from 1937 to 2004. Each displacement was calculated by comparing the result of 1937's survey.

との間に隆起の変動が一時的にあったが、沈降の変動傾向が 2004 年の第15回まで続いている.

3-2 1958 年 6 月の爆発活動後の地盤変動

水準点改埋後の第8回の水準測量は、1958年6月24 日の爆発後の7月から8月にかけて行われた.しかし、 この時には水準点のほとんどが改埋された後で、残念な がら1953年(第7回)と比較して、水準点AVL-2から AVL-13の区間で地盤がどの程度変動したのかが今と なっては見いだせないが、Fig.4に示すように水準点 AVL-14では1958年(第8回)と1959年(第9回)の測 量の間に一時的な隆起の変動が観測されている.

そこで、この期間の変動がどのようなものかを Fig. 5

須藤靖明・筒井智樹・中坊 真・吉川美由紀・吉川 慎・井上寛之

Fig. 6. Vertical displacements observed along the levelling route of Bouchuu-line at Aso central cones. The benchmark of AVL-1 was held fixed. Displacements during the period from 1959 to 2004 were calculated by comparing results from the 1959's survey. The benchmark of AVL-12 had been destroyed during the 1977's survey and the 1981's surveys.

に示す. この図では, Fig. 3 と同じく, 1958 年の第 8 回 の測量を基準として, その後の 1959 年 (第 9 回)の測量 での水準点ごとに差を求め, AVL-1 を不動として表現し てある. 水準点 AVL-12 まではほとんど変動が認められ ないが, 水準点 AVL-13 と AVL-14 になると大きな隆起 の変動がみられる. 特に水準点 AVL-13 の変動は顕著で ある. AVL-13 は中岳火口から西へ約 2 km の地点にある 水準点である. この隆起が 1958 年 6 月の爆発後の余効 変動かどうかについての議論は稿を改めたい.

3-3 1959年以降,2004年までの地盤変動

1959年(第9回)から2004年(第15回)までに行われた水準測量の結果を Fig.6に示す. ここでも図の表現方法は先の場合と同じで,1959年の測量値を基準とし、各回の測量値から変動値を求めた結果がそれぞれ示されている. これらの測量結果を概観すると,Fig.3でみられた1951年からの沈降変動とほぼ同じ傾向にあることがわかる. すなわち,水準点AVL-8から AVL-13(草千里から古坊中)にかけて,1977年(第11回)から1981年(第12回)までの間で一時的に隆起が観測されたものの(Fig.6で,1959年を基準とした1977年と1981年の変動を比べると1981年の沈降量のほうが少なくなっている),全体的には沈降の傾向が見いだされる.つまり,多少のばらつきはみられるが,長期的にみると草千里付近にあたる水準点AVL-10からAVL-13の間で最大約5~6 cm ほど沈降していることがわかる.

4. 水準測量から推定される沈降領域の位置

1937 年からの測量結果である Fig. 3, Fig. 5, Fig. 6の 各図をみると、中岳火口から西へ 3~4km の草千里付近 での沈降は、一時期の隆起変動があるものの、1953 年 (第7回)の測量から観測され始めたようである。そこ で、ここでは 1953 年頃より始まったこの草千里付近の 沈降をもたらした減圧力源の位置を推定する。

減圧力源の位置を推定するにあたり,2つのデータ セットを用いた.ひとつは,坊中線の1993年(第13回) 測量と最新の測量である2004年(第15回)測量との変 動を用いるデータセットA(付録1)である.もうひとつ は,坊中線の同じく1993年(第13回)測量と1997年 (第14回)測量との変動と吉田・赤水線の1989年と 1997年の測量と併合したデータセットB(付録2)である.

約70年間の水準測量データセットの中で、これらの データセットを用いた理由は、坊中線の水準点 AVL-1 から AVL-14 までの水準測量は 1937 年から 15 回繰り返 されているが、中岳第1火口への延長路線の測量は1993 年の第13回から行われていることと、この期間におけ る坊中線上の補助点 (AVL-XX 1/2) の変動値を含んで いることである(坊中線上の AVL-XX 1/2 と称される 補助点は、水準点 AVL-XX の補完を目的として水準点 AVL-XX とほぼ同等の構造で設置されているものであ るので、水準点と同様な測量値の扱いをしてよい). さら に、1997年(第14回)測量では、坊中線そのものに加え て中央火口丘南西斜面から西斜面をカバーする国土地理 院の吉田・赤水線の水準路線が含まれており、地盤変動 が比較的大きいと推定された草千里南部の周辺域を囲む ような水準路線が構成されているため、力源の推定に有 利となるからである.

力源推定にあたり,東京座標系の(東経 131 度 03 分, 北緯 32 度 54 分,海抜 0.0 m) = (0.0, 0.0, 0.0) (m) とし, それぞれ北方向,東方向および鉛直上方を正とする局所 座標系を用いた.以下,力源中心深さの表現においては, 特に注釈がない限り海水準を基準とした深さを用いるこ とにする.

4-1 期間 1993 年~2004 年の圧力源位置推定 一水準路線坊中線から一

1993 年から 2004 年までの 10 年あまりの間の変動で あるデータセット A から, 非線形最小二乗法(Marquardt 法)(付録 3)を用いて, 茂木モデル(球状圧力源モデル) (Mogi, 1958)に基づく圧力源(減圧力源)の位置を求め た.ただし,減圧力源の位置が測量路線坊中線から外れ た南西側にあると想定されるため, 非線形最小二乗法を 行うに当たっての圧力源位置の初期値として, 海水準か ら 5 km の深さに固定したグリッドサーチ法による計算 阿蘇火山の地盤変動とマグマ溜まり一長期間の変動と圧力源の位置-

Fig. 7. Locations of deflation sources BCU and BYA and the levelling routes with benchmarks at the central cones in Aso Volcano. Triangles show tops of notable summits among central cones. The cross mark indicates the initial coordinate of deflation sources. A large open ellipsoid BCU indicates the location of deflation source during the period of about 10 years from 1993 to 2004. Lengths of each axis represent standard deviations. The source BCU is derived from the spherical deflation source model by the 1993's and 2004's surveys along the Bouchuu-line. The depth of this source is about 5 km below the sea level. A smaller solid ellipsoid BYA indicates the location of deflation source during the period of deflation source during the period of about 1997's surveys along the Yoshida-line and the Akamizu-line in the southern west flank of Kusasenri. The depth of the source BYA is estimated at about 5.8 km below the sea level beneath the southern region of Kusasenri near Mt. Eboshi. The 1989's levelling data were obtained by GSI.

で得た圧力源の位置(Fig. 7 において+印で示されている)を用いた.また,最適な力源パラメーターを得るために,ここでは反復の過程で4つの力源パラメーター(付録3の x, y, z, k_0)を拘束せずに推定を行った.

データセット A の場合の圧力源位置の推定結果を与 えられた初期値とともに Table 1 に示す.データセット A の場合,圧力源中心座標に関する 3 つの初期値が更新 されずにそのまま結果として出された.これは初期値が 最適最小二乗解の標準偏差の範囲内に収まっていること を示しており、このような条件のもとでは今回採用した 非線形最小二乗法ではイタレーションが終了してしまう からである. Fig. 7 に減圧力源の推定位置をその標準偏 差とともに〇印で示し(標準偏差は半径の大きさで示し てある)、さらに初期値に相当する位置を Fig. 7 中に+ 印で示してある. データセット A を説明できる減圧力 源の深さは、草千里の南西、海面下 5.00±2.41 km であ る. また、1993 年から 2004 年の約 11 年間にわたる体積 変化量は約-4.19±5.09×10⁶ m³と推定された. 以降、こ

 Table 1. The coordinates of deflation source for

 BCU-Model

	<i>x</i> (m)	y (m)	<i>z</i> (m)	k ₀	$\Delta V(m^3)$
Initial value	-500.00	·3800.00	-5000.00	-1000000.	
Final location					
(Iterations = 4)	-500.00	·3800.00	-5000.00	-1000000.	4190000.
Uncertainty	1 92 3.00	2183.00	2413.00	1210000.	5090000.
*	(The coord	inate of the	origin : 13	1° 03′ 32°	54′ Om)

の位置に力源を置くものを BCU モデル(坊中線モデル) と呼ぶことにする.

4-2 期間 1993 年~1997 年の圧力源位置推定

―水準路線坊中・吉田・赤水線併合から―

前述のようにデータセットAによる減圧力源位置推定(BCUモデル)では、大きな不確定性が伴った.そこで、つぎに減圧力源位置推定精度の改善を図ることを目的として、坊中線の水準測量結果に加えて、これまでの測量から地盤変動が比較的大きいと推定された草千里南部の周辺域を囲むような水準路線がある国土地理院の水準路線吉田・赤水線についても水準測量を行った結果(1997年測量)も用いたデータセットBについて、前節と同様に非線形最小二乗法を用いて減圧力源位置を求めた.

データセット B の構成にあたり,坊中線とこの国土地 理院の吉田・赤水線との測量間隔の差について留意する 必要がある.すなわち,坊中線では1993 年から1997 年 の4年間の変動量が使用できるのに対して,吉田・赤水 線では1989 年に国土地理院が初めて測量を行っており, 第14回測量(1997 年)までの間隔が8年余りとなって いることである.

このような 2 組の測量結果の併合にあたって,次のような二つの仮定をおいた.ひとつは 1989 年から 1997 年までの力源体積変化率は一定であるとしたことと、もうひとつは吉田・赤水線における 1989 年国土地理院の測量結果の誤差が表示されていなかったので,該当区間の誤差は 0.003 m であるとしたことである.前者の仮定の根拠は Fig. 4 に示される水準点 AVL-14 の垂直経年変動のふるまいである.1977 年以降,水準点 AVL-14 の動きは一定の沈下率に従っているように見えるからである.また,後者の仮定の根拠は水準路線坊中線と吉田・赤水

線との接続点 BM10407 における 1997 年測量の誤差お よび国土地理院の定める一級水準測量の規格(例えば, 中堀, 1981)である.この仮定の下で吉田・赤水線の 1989 年から 1997 年の 8 年間分の測量結果を4年分とみ なすため、1/2 を乗じたものに 0.003 m を誤差として添 えたものをデータセット B とした.従って,本推定で直 接求められる力源体積変化量は 1993 年から 1997 年まで の4 年分に相当するものとなる.

Table 2. The coordinates of deflation source for BYA-Model

	<i>x</i> (m)	y (m)	<i>z</i> (m)	k ₀	$\Delta V(m^3)$
Initial value	-500.00	-3800.00	-5000.00	-1000000.	-
Final location					
(Iterations=4)	-87.70	-4360.00	-5830.00	-874000.	·3660000.
Uncertainty	370.80	672.00	149 0.00	459000.	192 0000.
1	* (The coord	nate of the	origin 131	° 03′ 32°	54′ 0m)

非線形最小二乗法での力源パラメーター推定の初期値 は前節のそれと同じものを与えた.データセットBをよ く説明する減圧力源はFig.7に●印で示された位置に 求められた.BCUモデルと同じく推定の標準偏差は半 径の大きさで示してある.求められた圧力源の水平位置 は草千里の南南西で,深さ約5.83±1.49kmとなり,ま た1993年から1997年の約4年間にわたる体積変化量は 約-3.66±1.92×10⁶m³と推定された.以降,この位置に 力源を置くものをBYAモデル(坊中・吉田・赤水線モ デル)と呼ぶことにする.Table 2に非線形最小二乗法を 行った初期値と最終値を示す.

4-3 長期間の沈降をもたらす圧力源について

Fig. 7に示されるように BCU モデルと BYA モデル とを比較すると、後者の方が推定量に対する標準偏差が 小さくなっている.これは、後者のデータセットに付け 加えられた吉田・赤水線が力源位置を包囲する水準路線 網を構成するためであると考えられる.また、Fig.7に 示されるように、BYA モデルの力源の推定位置と BCU モデルの力源の推定位置とを比較すると、標準偏差の範 囲内で両者は一致している.

従って、1993 年から 2004 年の期間における阿蘇火山 中央火口丘の水準変動を与える減圧力源の位置は、Fig. 7の BYA モデルが最適であると考えられ、この水平位 置は草千里の南に隣接する烏帽子岳の南南西1km 付近 に相当する.

5. 阿蘇火山中央火口丘における 1958 年から 2004 年 の地盤変動の解釈

前述の BYA モデルを用いて,これまでに坊中線で得 られた 1958 年から 2004 年に至る期間の水準測量結果か ら減圧力源体積変化を推定してみた.この推定にあたっ て用いた方法は,先に減圧力源位置の推定に使用したそ れと同じであるが,反復計算時の力源位置の更新を拘束 して力源圧力変化に関するパラメーターのみを計算し, 付録 3 の (3) 式によって力源体積変化を推定した.推定 結果を Table 3 に示す.

Table 3 では 1977 年以降の体積変化率がいずれも年間 10⁵~10⁶ m³程度であることが示されている. 測量間隔が

阿蘇火山の地盤変動とマグマ溜まり一長期間の変動と圧力源の位置-

Table 3. Volume Changes and Rates of BYA-Model for 1958-2004

Period	1958-1959	1959-1963	1963-1977	1977-1981	1981-1993	1993-1997	1997-2004
Years	1	4	14	4	12	4	7
Volume change (×106m³)	-40.7 ± 0.5	37.4±0.5	-6.43±0.74	1.35 ± 0.66	1.46±0.55	-3.66 ± 1.921	-6.24 ± 0.21
Volume change rate (×10 ⁶ m ³ /Year)	-40.7 ± 0.5	9.85±0.13	-0.460 ± 0.052	0.339±0.164	0.121±0.046	-0. 9 15±0.480	-0.891±0.030

(The coordinate of deflation source : (x, y, z) = (-87.70, -4360.00, -5830.00) (m))

Table 4. Residuals and Errors at each Benchmark in meters (underline represents that residual value is more than two times of error value)

Period	1958-	1959	1959·	1963	1963-	1977	1977-1981		
	Residual	Error	Residual	Error	Residual	Error	Residual	Error	
AVL-2	<u>·0.662E·02</u>	0.018E-02	<u>0.429E-02</u>	0.018E-02	<u>0.168E-02</u>	0.047E-02	-0.197E-03	0.936E-03	
AVL-3	·0.300E·02	0.276E-02	-0.804E-03	1.65E-03	0.241E-02	0.121E-02	0.135E-02	0.142E·02	
AVL-41	_	_		_	_	_	0.190E·02	0.147E-02	
AVL-5	0.662E-03	3.19E-03	0.343E-02	0.199E-02	0.361E-03	1.73E-03	-0.212E-02	0.194E-02	
AVL-6	<u>0.905E-02</u>	0.340E-02	<u>-0.167E-01</u>	0.029E-01	<u>0.514E-02</u>	0.257E-02	-0.382E-02	0.238E-02	
AVL-7	<u>0.242E-01</u>	0.035E-01		-	0.369E-02	0.279E-02	·0.298E·02	0.245E-02	
AVL-8	<u>0.444E-01</u>	0.040E-01	<u>-0.549E-01</u>	0.038E-01	-0.257E-02	0.322E-02	·0.131E·02	0.279E-02	
AVL-10	<u>0.786E-01</u>	0.043E·01	<u>-0.929E-01</u>	0.043E-01	-0.647E-02	0.416E-02	-0.766E-03	0.370E-02	
AVL-11	<u>0.868E-01</u>	0.048E-01	<u>-0.949E-01</u>	0.050E-01	-0.837E-02	0.481E-02	0.704E-03	0.409E-02	
AVL-13	<u>0.163E+00</u>	0.005E+00	<u>-0.102E+00</u>	0.006E+00	<u>·0.131E·01</u>	0.060E-01	0.140E-02	0.465E-02	
AVL-14	<u>0.138E+00</u>	0.005E+00	<u>·0.922E-01</u>	0.059E-01	-0.136E-02	0.599E-02	0.811E-02	0.480E-02	
AVL-15	<u>0.104E+00</u>	0.005E+00			-	_	_	-	
AVL-17	<u>0.102E+00</u>	0.005E+00	<u>-0.591E-01</u>	0.061E-01			<u> </u>	_	

Period	1981-	1993	1993-	1997	1997-2004		
	Residual	Error	Residual	Error	Residual	Error	
AVL-2	0.181E-03	1.12E-03	<u>·0.212E-02</u>	0.093E-02	0.102E-02	0.051E-02	
AVL-3	0.708E-03	1.34E-03	-0.227E-02	0.137E-02	0.106E-02	0.094E-02	
AVL-41	0.631E-03	1.44E-03	-0.290E-02	0.172E·02	<u>0.215E-02</u>	0.107E-02	
AVL-5	0.211E-02	0.174E-02	-0.107E-02	0.201E-02	0.738E-03	1.44E-03	
AVL-6	0.193E-02	0.206E-02	·0.237E·03	2.38E-03	·0.160E·02	0.164E-02	
AVL-7	-0.130E-02	0.221E-02	0.109E-02	0.309E-02	·0.124E·02	0.168E-02	
AVL-8	·0.201E·02	0.246E-02	0.135E-02	0.413E-02	0.447E-03	1.72E-03	
AVL-10	<u>-0.115E-01</u>	0.031E-01	0.186E-02	0.659E-02	0.892E-03	2.10E-03	
AVL-11	0.355E-02	0.334E-02	0.117E-02	0.706E-02	0.238E-02	0.235E-02	
AVL-13	0.561E-02	0.357E-02	-0.935E-03	7.25E·03	0.141E·02	0.252E-02	
AVL-14	0.502E-02	0.380E-02	0.786E-03	6.36E-03	0.212E-02	0.260E-02	
AVL-15		_	_	-		_	
AVL-17	_	_	· · · ·	-			

均等ではないので、阿蘇中岳火口における個々の噴火活 動と直ちに対応させることは難しいが、Table 3 に示さ れる体積変化の傾向は、Fig. 6 に示された水準点 AVL-8 から AVL-12 の変動傾向にほぼ対応するうえ、1993 年か ら 2004 年の期間における水準点 AVL-14 の変動傾向 (Fig. 4) とも対応する.

次に、それぞれの期間における測量結果とモデル計算 値との差である残差を Table 4 に示す. Table 4 では最上 部に期間を、その下の分割された欄の左側に残差を、分 割の右側に残差の誤差をいずれも単位 m で示す.

Table 4 で誤差の 2 倍以上の残差量に下線を引いた. 1958-1959・1959-1963・1963-1977 の 3 つの期間で,水準路線の中岳火口寄りの水準点群に大きな残差が系統的にあらわれる傾向が認められ、これらの残差の絶対値はいずれも水準点 AVL-13 に向かって大きくなる傾向が認められる.加えて 1958-1959・1963-1977 の 2 つの期間では水準点 AVL-13 がその周囲に比べてもっとも大きな絶対値の残差を示すことが注目される.しかしながら、このような残差の傾向が有意に見られるのは 1977 年までで,これ以降の期間では残差が誤差と同程度かそれよりも小さいことも Table 4 に示されている.

1958-1959の期間における水準点 AVL-13の残差は +0.163±0.005 m で、1958年6月24日に発生した爆発 の直後の7月から8月にかけて第8回の測量が行われた ことを考慮すると、中岳火口からの噴出に伴う浅所の圧 力変動を反映している可能性が高いと考えられる.つま り、他の測量期間間隔(平均6.6年)より短い約1年の間 隔で測量が行われたこの1958-1959の期間の地盤変動に は、1958年6月の爆発に関わる火山活動がまだ維持され て、BYA モデル力源とは別の力源による系統的な影響 があることを示唆しているとも考えられる.

一方, 1963-1977の期間における水準点 AVL-13の残 差は0.0131±0.0060mで, 残差量が1959-1963の期間の それと比較して一桁小さくなったものの, 水準点 AVL-13の周囲に比べて残差が依然として大きいことを示し ている. これは, 水準点 AVL-13が地盤変動とは別の理 由で動いてしまった事故による可能性も考えられるが,

Table 4 によれば, AVL-13 の西側に隣接する水準点 AVL-11, 10 の残差量は AVL-13 と同様な傾向を示して いる. これらの水準点における残差はその誤差の 1.5 倍 以上を示している. 以上のことから, 水準点 AVL-13 が 示す大きな残差は, この水準点単独の事故であるとする 必要はなさそうである. つまり, 地下の力源による地盤 変動を示していると考えられる. また, この期間では北 山腹の水準点 AVL-6 を中心とする正の残差もあらわれ ており, その周囲の残差分布および誤差を考慮するとこ れもやはり地下の力源による地盤変動を示していると考 えられる.

そこで,水準点 AVL-13 の北 1 km の杵島岳 (KSM) 直 下で発生した 1978 年 9 月 19 日の群発地震活動と,水準 点 AVL-13 の変動との関連が注目される. すなわち, 1977 年測量以降,水準点 AVL-13 周辺では有意な残差が 認められないことは, 1978 年の群発地震を境にして水準 点 AVL-13 付近の浅所力源の活動が検出不可能なレベル にまで下がったことを意味するのかもしれない.

上述のような水準点 AVL-13 の特異な変動は,上で述べた減圧力源の位置の推定に何らかの影響を及ぼすことが示唆されるので,試みに,データセットAおよびBで水準点 AVL-13 の変動値を除外した場合の非線形最小二 乗法を行った (Fig. 8, Table 5, 6). 与えた初期値と拘束 条件は第4章の BCU モデルおよび BYA モデルの場合と同一にした.

データセット A では,水準点 AVL-13 の変動値を除外 した場合,減圧力源位置がやや南西に移動し,深さもや や浅くなり(約4.8 km),標準偏差が30% ほど大きく なった.これは水準点 AVL-13 が力源の近傍に位置し, 力源位置の推定に際して重要な水準点であることを示し ている.しかし,水準点 AVL-13 の変動値を含んだ場合 (BCU モデル)と除外した場合(本推定)とでは,標準偏 差の大きさからみて両者位置の差は有意とは言い難い.

一方,データセット B では,水準点 AVL-13 の変動値 を除外してもしなくても,減圧力源推定位置の移動はほ とんどみられなかった.

以上のことから, 1958-1977年の期間で認められるような水準点 AVL-13を中心とする残差の分布は, 前述の BYA モデルでは説明できない地盤変動が存在すること を示唆している. これは中岳火口が高い活動レベルを維持していた 1963年以前だけに見られる特徴であるのか, あるいは1年ほどの時間スケールで見た場合に一般的に 見られる特徴なのか, 今後の検討課題である.

6. 阿蘇火山の減圧力源とマグマ供給機構 一開放型火山一

6-1 減圧力源とマグマ溜まり

前章で述べたように,茂木モデルを用いて圧力源を求めた結果,減圧力源が草千里の南部付近に求められた. 阿蘇火山の中央火口丘の一つ地域である草千里は,現在火山活動が活発な中岳火口の西方 3~4 km の位置にある.

一方, 草千里南部には, その直下にマグマ溜まりと考 えられる地震波低速度領域の存在が指摘されている. Sudo and Kong (2001) は, 阿蘇火山における中央火口丘 阿蘇火山の地盤変動とマグマ溜まり―長期間の変動と圧力源の位置―

Fig. 8. Locations of deflation sources determined without AVL-13. The display scheme is the same as the previous figure. The depth of the source BCU is about 4.8 km below the sea level. The depth of the source BYA is estimated at about 5.9 km below the sea level beneath the southern region of Kusasenri near Mt. Eboshi.

Table 5.	The	coordinates	of	deflation	source	for
BCU	-Mod	el without A	VL-	13		

	<i>x</i> (m)	y (m)	<i>z</i> (m)	k ₀	$\Delta V(m^3)$
Initial value	-500.00	-3800.00	-5000.00	-1000000.	-
Final location					
(Iterations=4)	-853.00	-4260.00	-4840.00	-1060000.	·4460000.
Uncertainty	2530.00	2830.00	2310.00	1470000.	6150000.
	*(The coord	nate of the	origin : 13	1° 03′ 32°	54′ Om)

深部の3次元地震波速度構造を推定し、その結果、地震 波低速度領域が中岳火口直下には無く、約3~4km 西の 草千里南部の下に存在しているのを見いだしている (Fig. 9; 図は震源分布の関係から北の方向が図示されて いるように傾いている.この図の上は深さ6km(海水準

Table 6. The coordinates of deflation source forBYA-Mod el without AVL-13

	<i>x</i> (m)	<i>y</i> (m)	<i>z</i> (m)	ko	$\Delta V(m^3)$
Initial value	-500.00	-3800.00	-5000.00	·1000000.	
Final location					
(Iterations=4)	-55.90	-4350.00	-5880.00	·885000.	·3710000.
Uncertainty	376.40	670.00	1510.00	470000.	1970000.
-	*(The coord	inate of the	origin : 13	1° 03′ 32°	54′ Om)

下)のP波速度およびS波速度のそれぞれの地震波速度 構造初期モデルに対する変化を示し、下の図は横軸X 軸3km ラインの断面でのP波速度およびS波速度の変 化である).

この地震波低速度領域では、P波速度で10%から25

須藤靖明・筒井智樹・中坊 真・吉川美由紀・吉川 慎・井上寛之

Fig. 9. The seismic wave velocity perturbations modified from Sudo and Kong (2001). AVL is Aso Volcanological Laboratory. A heavy solid line delineates the outline of the caldera. Perturbations are contoured at 10% intervals with solid and dashed lines indicating velocities faster and slower than the average model, respectivery. Top: Horizontal P- and S- wave velocity perturbation sections at the depth of 6 km, at which the velocity resolution is very good. Bottom: Vertical P- and S- wave velocity perturbation sections at 3 km X-axis, at which the velocity resolution is very good above 8 km depth.

阿蘇火山の地盤変動とマグマ溜まり―長期間の変動と圧力源の位置―

Fig. 10. Model of magma supply system in Aso Volcano. Nakadake Crater is now active.
LPT-Source indicates the source of long period tremor with a period of about 15 seconds (Yamamoto *et al.*, 1999a, 1999b). The magma reservoir is located from 3-D tomography of Pand S- wave velocities (Sudo and Kong, 2001). A conduit from the magma reservoir to the crater is kept to be its shape.

%, S 波速度で 20% 以上の速度減少が生じている. 室内 実験によれば, 10% 程度の岩石の溶融状態であれば, P 波速度で 20%, S 波速度で 30% 程度の速度減少となる (Mavko, 1980; Sato et al., 1989). 従って, ここで草千里 南部直下に見いだされた地震波低速度領域は数%以上の 溶融状態であれば説明できることになる. つまり, 草千 里南部直下にマグマ溜まりが存在していると推定される のである. このマグマ溜まりの大きさは, 地震波速度低 下の 20%~30% を境界とすれば直径 3~4 km 程度の領 域が考えられる.

ここで注目すべきことは、この地震波低速度領域の位 置と今回水準測量から求められた減圧力源の位置とが、 ほとんど一致していることである.従って、水準測量結 果により求められた減圧力源は、その位置から考える と、マグマ溜まりの収縮を示している可能性がある.

6-2 開放型火山

第2章で述べた阿蘇火山の火山活動の特徴的現象は, これまでの議論で得られたマグマ溜まりと圧力源の位置 関係から開放型火山という言葉で考えると理解される. 阿蘇火山では、その振幅や発生頻度に変動があるものの 常時火山性微動が観測される.これは常時、火口から水 蒸気をはじめ火山ガスが噴出していることと無関係では ない.そしてこれは常に火山ガスの噴出経路が確保され ていなければならないことを示し、Fig. 10に示したモ デルで説明できる.

っまり、草千里南部直下のマグマ溜まりから活動して いる中岳火口まで、何らかの比較的堅牢な通路が常時確 保されており、火山性地震も地殻変動にも大きな変動を もたらすこと無く、火山活動が活発化できるのであろ う.通常は、マグマ溜まりから火山ガスのみが大量に放 出され、先に述べた通路を通過する時に、中岳火口の西 で長周期火山性微動が発生し、火口直下で短周期火山性 微動を生じるのであろう.

火山の活動期には、マグマ溜まりからのガス供給が加 速される.活動初期には出口となる火口は未だ大きく開 放されていないため、火口直下でガス圧が高まり、小破 壊が繰り返される結果、震源の浅い地震(孤立型微動) が増加する.この浅い地震が増加することにより、ガス 溜まりが破壊限界まで大きく成長していき、最終的に爆 発を起こすことになる.

減圧力源が存在すると推定された草千里付近では, 1978年9月19日杵島岳直下で群発地震が発生したが (京都大学理学部火山研究施設,1979),ここ数十年間地 震活動は観測されていない.また,草千里南西地域下の マグマ溜まりの存在は,阿蘇火山における古くから存在 する火山性温泉である,湯の谷・吉岡・地獄・垂玉の位 置的な関係とも矛盾しない.

7. おわりに

阿蘇火山において最近行われた水準測量と3次元地震 波速度構造を合わせて検討すると、次のような結果が得 られる.

a. 火山活動の活発化にともなう大きな地盤変動は, 現在の活動火口である中岳火口付近では確認できない.

b. 中央火口丘山腹から中岳火口へ続く水準測量の 測線では、草千里周辺で沈降が長期間確認できる。

c. 水準測量の結果について茂木モデルを用いた圧力 源の推定を行うと,減圧力源が中岳火口から西方へ 3~4 km 離れた草千里南部付近に求まる.

d. 水準測量の結果から推定された減圧力源の位置 と地震波から推定された低速度領域は一致し,草千里南 部付近直下にマグマ溜まりが存在し,中岳火口の火山活 動の供給源となっていると考えられる.

e. 減圧力源はマグマ溜まりの収縮を意味すると考え

須藤靖明・筒井智樹・中坊 真・吉川美由紀・吉川 慎・井上寛之

304

られる.

f. これらのことから、阿蘇火山では、草千里南部の マグマ溜まりから中岳火口まで火山ガスの上昇経路が定 常的に確保されており、ガス放出にともなう火山性微動 が常時観測され、活動期にはマグマが中岳火口へ供給さ れても火口付近では地盤が大きく変動しない開放型と なっていると考えられる.

本報文は、長期に亘る水準測量から見いだされた地盤 変動,沈降領域の位置を推定したものであるが、火山活 動にともなう沈降領域の時間的推移,あるいはその量的 変化と火山活動の関連などについては詳しく触れなかっ た.このような重要で興味ある課題がまだ多く残ってい るが、ここでは地震・地盤変動のこれまでの観測を通し て考えられることをまとめた、今後はこの他の分野から も考えていく必要が充分あろう.

謝 辞

水準測量は多くの方々の長年の尽力があってはじめて 達成できた.特に,京都大学火山研究センターのこれま での職員の方々をはじめ,現在の職員の方々の献身的な 協力があった.また,国土地理院から坊中線および吉 田・赤水線の水準点使用の快諾と1989年の水準測量結 果を頂いた.ここに厚くお礼申し上げる.また,2名の匿 名の査読者と編集担当の西村太志氏の方々からは大変有 益な指摘を頂き,本報文を改善できた.感謝申し上げる.

引用文献

- Dieterich, J. H. and Decker, R. W. (1975) Finite element modeling of surface deformation associated with volcanism. J. Geophys. Res., 80, 4094-4102.
- 菊池茂智 (1962) 阿蘇山における短周期火山性微動について、火山, 7, 1-16.
- 菊池茂智 (1964) 阿蘇山の短周期火山性微動について (2).火山,9,9–16.
- 菊池茂智・迫 幹雄 (1968) 阿蘇山の火山性微小地震と 微動について (1).火山,13,84-94.
- 菊池茂智・外 輝明・山田年広 (1978) 阿蘇火山の精密 水準測量(1977年)について. 阿蘇火山の集中総合観 測(第1回1977)報告, 16-18.
- 菊池茂智・江藤敏治・迫 幹雄・外 輝明 (1984) 阿蘇 火山の精密水準測量(1981年)および近年のデータの まとめ. 阿蘇火山の集中総合観測(第2回1981)報告, 22-28.
- 菊池茂智・小野博尉 (1985) 阿蘇火山の地殻変動観測.
- 火山体の物理的場の比較研究による噴火災害予測(科 学研究費補助金研究成果報告書), 55-63.
- 久保寺 章 (1964) 阿蘇火山の微動について (1) 第2種 火山性微動の波動特性とその震動源の解明.火山,9, 87-98.
- 久保寺章・里村幹夫・住友則彦 (1974) 阿蘇火山におけ

る 重力値の繰返し測定.火山,19,123-125.

- 久保寺章・中川一郎・福田洋一・里村幹夫・田島広一・ 大島弘光・石原和弘 (1978) 阿蘇火山周辺における重 力の精密測定. 阿蘇火山の集中総合観測(第1回 1977)報告, 23-30.
- 久保寺章・里村幹夫・福田洋一・塚本博則・植木貞人 (1984) 阿蘇火山周辺における重力の精密測定(1979 年5月及び1981年11月). 阿蘇火山の集中総合観測 (第2回1981)報告, 33-38.
- 久保寺章・里村幹夫 (1985) 阿蘇火山における重力値の 繰り返し測定.火山体の物理的場の比較研究による噴 火災害予測(科学研究費補助金研究成果報告書),64-68.
- 京都大学理学部火山研究施設 (1979) 阿蘇火山の最近の 地震活動および 1978 年 9 月 19 日の杵島岳群発地震. 火山噴火予知連絡会会報, 14, 78-80.
- 京都大学理学部火山研究施設 (1989a) 阿蘇火山における 火山性微動及び火山地震観測結果 (1989 年 1 月~1989 年 1 月).火山噴火予知連絡会会報,43,66-71.
- 京都大学理学部火山研究施設 (1989b) 阿蘇火山における 火山性地震(1988年, 1989年1月1日~5月7日, 5 月8日~5月9日) 及び火山性微動(1988年7月~ 1989年5月16日) 観測結果.火山噴火予知連絡会会 報,44,127-132.
- 京都大学理学部火山研究施設 (1990a) 阿蘇火山における 火山性地震・火山性微動・地温変動・地殻変動・地磁 気等の観測.火山噴火予知連絡会会報,46,46-58.
- 京都大学理学部火山研究施設 (1990b) 阿蘇火山の最近の 活動および 1990 年 4 月 20 日の噴火.火山噴火予知連 絡会会報,47,71-83.
- 京都大学理学部火山研究施設 (1990c) 阿蘇火山の最近の 活動 (1990 年 5 月~10 月).火山噴火予知連絡会会報, **48**, 80-87.
- 京都大学理学部火山研究施設 (1991a) 阿蘇火山の最近の 活動 (1990 年 10 月~1991 年 1 月).火山噴火予知連絡 会会報,49,33-38.
- 京都大学理学部火山研究施設 (1991b) 阿蘇火山の最近の 活動(1991年2月~5月).火山噴火予知連絡会会報, 50, 32-37.
- 京都大学理学部火山研究施設 (1991c) 阿蘇火山の最近の 活動 (1991 年 2 月~1991 年 10 月).火山噴火予知連絡 会会報,**51**,41-45.
- 京都大学理学部火山研究施設 (1992) 阿蘇火山の最近の 活動 (1991 年 10 月~1992 年 5 月).火山噴火予知連絡 会報, 53, 24-29.
- 京都大学理学部火山研究施設 (1993) 阿蘇火山の最近の 活動(1992 年 6 月~1993 年 2 月).火山噴火予知連絡 会報,55,26-41.
- Malone, S. D., Endo, E. T., Weaver, C. S. and Ramey, J. W. (1981) Seismic monitoring for eruption prediction. US. Geol. Surv. Prof. Pap., 1250, 803-813.
- Marquardt, D. W. (1963) An algorithm for least square estimation of nonlinear parameters. J. Soc. Indust. App. Mathem., 11, 431-441.
- Mavko, G. M. (1980) Velocity and attenuation in partially molten rocks. J. Geophys. Res., 85, 5173-5189.
- McNutt, S.R. (1996) Seismic monitoring and eruption

阿蘇火山の地盤変動とマグマ溜まり―長期間の変動と圧力源の位置―

forecasting of volcanoes: a review of the state-of-the art and case histories. In *Monitoring and Mitigation of Volcano Hazards* (Scarpa, R. and Tilling, R.I. eds), 99–146. Springer.

- Mogi, K. (1958) Relationship between eruptions of various volcanoes and the deformation of the ground surfaces around them. *Bull. Earthq. Res. Inst.*, **36**, 99–134.
- Murray, J. B., Pullen, A. D. and Saunders, S. (1995) Ground deformation surveying of active volcanoes. In *Monitoring Active Volcanoes* (McGuire, B., Kilburn, C. R. J. and Murray, J. eds), 113-150, UCL Press Lmt.
- 中堀義郎 (1981) 精密水準測量.現代測量学 測地測量 1, 坪川家恒編,日本測量協会, 302.
- 小野博尉(1978)阿蘇火山中岳周辺の地震活動. 阿蘇火山の集中総合観測(第1回1977)報告, 4-8.
- 小野博尉 (1985) 阿蘇火山火口周辺の地震活動.火山体 の物理的場の比較研究による噴火災害予測(科学研究 費補助金研究成果報告書), 37-42.
- 小野博尉 (1987): 阿蘇火山の波形の似た火山性地震. 京 大防災研年報, 30, B-1, 19-28.
- 小野博尉・迫 幹雄 (1978) 阿蘇火山での光波測距儀に よる辺長測量. 阿蘇火山の集中総合観測(第1回 1977)報告, 19-22.
- 小野博尉・外 輝明 (1984) 阿蘇火山中岳周辺の地震活動(1981年). 阿蘇火山の集中総合観測(第2回1981) 報告, 7-16.
- 小野博尉・迫 幹雄 (1984) 阿蘇火山での光波測距儀に よる辺長測量 (2). 阿蘇火山の集中総合観測(第2回 1981)報告, 29-32.
- Press, W. H., Teukolsky, S. A., Vettering, W. T. and Flannery, B. P. (1992) NUMERICAL RECIPES in FOR-TRAN. The art of scientific computing. Second edition, Cambridge press, 963 p.
- Sassa, K. (1935) Volcanic micro-tremors and eruptionearthquakes (Part 1 of the geophysical studies on the Volcano Aso). Mem. Coll. Science, Kyoto Imp. Univ., Ser., A, 18, 5, 254-293.
- Sassa, K. (1936) Micro-seismometric study on eruptions of the Volcano Aso (Part 2 of the geophysical studies on the Volcano Aso). Mem. Coll. Science, Kyoto Imp. Univ., Ser., A, 19, 1, 11–56.
- Sato, H., Sacks, I.S. and Murase, T. (1989) The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: Comparison with heat flow and electrical conductivity studies. J. Geophys. Res., 94, 5689–5704.

下鶴大輔・後藤賢一・中牟田修・野田博治 (1958) 阿蘇

火山における火山性微動の観測.火山,3,35-42.

- 須藤靖明 (1978) 火山性微動の消長(1976~1977年). 阿 蘇火山の集中総合観測(第1回)報告(1977年8~12 月), 1-3, 1978.
- 須藤靖明 (1984) 火山性微動の消長(1978~1982 年)。阿 蘇火山の集中総合観測(第 2 回)報告(1981 年 8~12 月)、1-6、1984.
- 須藤靖明 (1985) 阿蘇火山における火山性微動の変動–
 1983 年, 1984 年の消長と火山活動–.火山体の物理的
 場の比較研究による噴火災害予測,昭和 59 年度科学
 研究費補助金自然災害特別研究 (1)研究成果報告書,
 49-54, 1985.
- Sudo, Y. (1988) Development of device for successive spectral analysis of volcanic micro-tremors. Proceedings Kagoshima International Conference on Volcanoes 1988, 331-334, 1988.
- 須藤靖明・吉川 慎 (1995) 阿蘇火山における重力の測 定.月刊地球号外, 11, 75-79.
- Sudo, Y. and Kong, L. S. L. (2001) Three-dimensional seismic velocity structure beneath Aso Volcano, Kyushu, Japan. Bull. Volcanol., 63, 326-344.
- 須藤靖明 (2001) 阿蘇火山の火山活動の特徴一開放型火山一. 月刊地球, 23, 545-550.
- 須藤靖明 (2004) 漱石・白秋・清張と阿蘇火山. 櫂歌書 房, 144 p.
- 和田卓彦・加茂幸介・須藤靖明 (1970) 火山性微動の観 測の数値化.火山, 15, 1-9.
- Wada, T., Kamo, K. and Sudo, Y. (1970) Measurement of kinetic energy of volcanic micro-tremors. Special Contributions, Geophysical Institute, Kyoto University, 10, 149– 158, 1970.
- Yamamoto, M., Kawakatsu, H., Kaneshima, S., Mori, T., Tsutsui, T., Sudo, Y. and Morita, Y. (1999) Detection of a crack-like conduit beneath the active crater at Aso volcano,Japan. *Geophysical Res. Lett.*, **26**, 3677–3680.
- Yamamoto, M., Kawakatsu, H., Kaneshima, S., Iidaka, T., Oikawa, J., Watada, S., Morita, Y., Mori, T., Tsutsui, T., Sudo, Y., Yoshikawa, S., Hashimoto, T. and Nakabo, M. (1999) ASOBOI97: Aso seismic observation with broadband instruments in 1997. Bull. Earthq. Res. Inst. Univ. Tokyo, 74, 267-285.
- 吉川圭三 (1954) 阿蘇火山の地盤変動について (第1 報). 地震, 7, 151-154.
- 吉川宗治・狐崎長琅 (1958) 阿蘇火山の短周期火山性微動について.火山,3,147-153.

(編集担当 西村太志)

須藤靖明・筒井智樹・中坊 真・吉川美由紀・吉川 慎・井上寛之

付録 1 データセット A 坊中線 1993-2004

(Vertical displacement between 1993 and 2004)

Benchmark	X [m]	Y [m]	Z [m]	1993-2004	S. D.
AVL-1 AVL-1 1/2	2734 2246	2794 2640	570 597	0 -0. 004918	0 0. 000216
AVL-2	1767	2511	625	-0.003170	0.000912
AVL-2 1/2 AVL-3	1341	2282	652 669	-0. 004382 -0. 004474	0. 001042
AVL-3 1/2	2094	1989	685	-0. 003710	0. 001418
AVL-41	2306	1668	703	-0. 005434	0. 001546
AVL-4 1/2	2869	1400	733	-0. 009081	0.001778
AVL-5	3136	1130	758	-0. 005502	0.001855
AVL-5 1/2	2657	1003	793	-0. 008754	0. 001859
AVL-6	2276	1105	821	-0. 008857	0.002014
AVL-6 1/2	1814	1014	855	-0.0143/0	0.002045
	1301	770	8/0		0.002149
AVL-/ 1/2	670	300	903	-0.022320	0.002224
AVL-0	079	134	920	-0. 012321	0.002200
AVL-8 1/2	397	-273	946	-0. 015432	0. 002351
AVL-92	264	-754	973	-0. 021031	0. 002522
AVL-9 1/2	59	-1066	997	-0. 018204	0. 002599
BM10405	60	-1146	1024	-0. 023173	0.002670
AVL-10	113	-1273	1038	-0. 020056	0. 002680
AVL-10 1/2	331	-1294	1068	-0. 022116	0.002812
AVL-11	429	-1610	1118	-0. 020346	0. 002981
AVL-11 1/2	678	-1888	1145	-0.025/84	0.002996
BM10406	378	-18/3	1161	~0. 028245	0.003010
AVL-KUS	196	-2167	1152	-0. 02/520	0.003020
AVL-12 1/2B	886	-1927	1115	-0. 020780	0.003039
AVL-13	1448	-2094	1100	-0. 023985	0. 003158
BM10407	2079	-2544	1113	-0. 020963	0. 003264
JMA	2426	-2541	1138	-0. 020650	0.003290
AVL-14	2665	-2649	1162	-0. 018113	0.003375
AVL-14 1/2B	3111	-2738	1184	-0. 019661	0. 003443
AVL-141 1/2	3088	-2676	1185	-0. 016867	0. 003443
AVL-152	3460	-2615	1228	-0. 019669	0. 003492
BM10408	3423	-2418	1257	-0. 011205	0. 003542

(The coordinate of the origin : $131^\circ~03'~~32^\circ~54'$

Om)

付録 2

データセット B 坊中線 1993-1997 と吉田・赤水線 1989-1997 の併合

(Vertical displacement between 1993 and 1997 including reduced GSI survey (1989-1997))

Benchmark	X [m]	Y[m]	Z [m]	1993-1997	S. D.
AVL-1	2734	2794	570	0	0
AVL-1 1/2	2246	2640	597	-0. 003540	0. 000198
AVL-2	1767	2511	625	-0. 002898	0. 000790
AVL-2 1/2	1341	2282	652	-0. 003299	0. 000922
AVL-3	1649	2232	669	-0. 003479	0. 001132
AVL-3 1/2	2094	1989	685	-0. 003726	0. 001176
AVL-41	2306	1668	703	-0. 004633	0. 001326
AVL-4 1/2	2869	1400	733	-0. 004405	0. 001569
AVL-5	3136	1130	758	-0. 002970	0. 001602
AVL-5 1/2	2657	1003	793	-0. 002918	0. 001606
AVL-6	2276	1105	821	-0. 002820	0. 001693
AVL-6 1/2	1814	1014	855	-0. 004962	0. 001722
AVL-7	1361	770	876	-0. 002645	0. 001832
AVL-7 1/2	1120	358	903	-0. 003346	0. 001920
AVL-8	679	134	928	-0. 003964	0. 001942
AVL-8 1/2	397	-273	946	-0. 005223	0. 002048
AVL-92	264	-754	973	-0. 007907	0. 002242
AVL-9 1/2	59	-1066	997	-0. 006456	0. 002256
BM10405	60	-1146	1024	-0. 008053	0. 002282
AVL-10	113	-1273	1038	-0. 006588	0. 002283
AVL-10 1/2	331	-1294	1068	-0. 007761	0. 002404
AVL-11	429	-1610	1118	-0. 007677	0. 002597
AVL-11 1/2	678	-1888	1145	-0. 011992	0. 002598
BM10406	378	-1873	1161	-0. 011256	0. 002614
AVL-KUS	196	-2167	1152	-0. 010848	0. 002626
AVL-12 1/2B	886	-1927	1115	-0. 007879	0. 002636
AVL-13	1448	-2094	1100	-0. 009978	0. 002750
BM10407	2079	-2544	1113	-0. 008697	0. 002848
JMA	2426	-2541	1138	-0. 007417	0. 002866
AVL-14	2665	-2649	1162	-0. 006969	0. 002937
AVL-14 1/2B	3111	-2738	1184	-0. 006161	0. 002992
AVL-141 1/2	3088	-2676	1185	-0. 006248	0. 002992
AVL-152	3460	-2615	1228	-0. 008025	0. 003011
BM10408	3423	-2418	1257	-0. 003871	0. 003043
AVL-171	3301	-2184	1269	-0. 005451	0. 003049
BM1896 (new)	2756	3499	528	0. 000012	0.000571
AVL-0	2765	3297	530	0. 000079	0.000556
AVL-0 1/2	2910	3061	536	-0. 001805	0.000154
BM10409	1722	-3789	1001	-0. 002248	0.003000
BM10410	157	-4754	911	-0. 010178	0.003000

須藤靖明・筒井智樹・中坊 真・吉川美由紀・吉川 慎・井上寛之

BM10404	-339	-115	868	-0. 008080	0. 003000
BM10403	-1674	-302	702	-0. 006758	0. 003000
BM10402	-2675	-1918	594	-0. 008523	0. 003000
BM10401	-3937	-3103	479	-0. 012453	0. 003000
BM10415	-3146	-3837	444	-0. 011839	0. 003000
BM10414	-2663	-4619	463	-0. 008470	0. 003000
BM10413	-1553	-4496	563	-0. 010557	0. 003000
BM10412	-1191	-4689	690	-0. 012745	0. 003000
BM10411	-873	-4716	803	-0. 006439	0. 003000

(The coordinate of the origin : 131° 03' 32° 54' Om)

阿蘇火山の地盤変動とマグマ溜まり一長期間の変動と圧力源の位置一

埋没球状圧力源における圧力変化による地表垂直変位 の表現式 (Mogi, 1958) をもとにした,位置 (*x*, *y*, *z*) に中 心をもつ半径 *a*_sの埋没球状力源が Δ*P* だけ減圧したと きに地表の水準点 (*x*_s, *y*_s, *z*_s) で観測される相対変位 Δ*U*_z (基準点 (*x*_n, *y*_n, *z*_n))の表現式 (1) を用いた.

$$\Delta U_z = k_0 \left\{ \frac{D}{(D^2 + r^2)^{3/2}} - \frac{D_r}{(D_r^2 + r_r^2)^{3/2}} \right\}$$
(1)

ここに $D = (z_S - z), D_r = (z_r - z), r = \{(x_S - x)^2 + (y_S - y)^2\},$ $r_r = \{(x_r - x)^2 + (y_r - y)^2\}, k_0 = \frac{(\lambda + 2\mu)a_S^3\Delta P}{2\mu(\lambda + \mu)}$ であり、 λ, μ はラメの定数である。

上記のフィッティング関数はパラメーター x, y, z, k_0 に関して非線形である. これ以降パラメーター x, y, z, k_0 を力源パラメーターと呼ぶことにする. 特にパラメー ター k_0 を圧力変化に関するパラメーター呼ぶことにす る. 式中の 4 つのパラメーター x, y, z, k_0 は非線形最小 二乗法による反復推定 (Marquardt, 1963) を行って推定 した. パラメーター推定のプログラムコードとしては Press *et al.* (1992) による Marquardt 法サブルーチンを 採用した. Marquardt 法サブルーチンを用いるためには先述の フィッティング関数の他に、各パラメーターに対する導 関数の値を与えなければならない. 4つのパラメーター x, y, z, k_0 に対するそれぞれの導関数は次の式 (2) に よって与えた.

$$\frac{\partial \{\Delta U_{z}\}}{\partial x} = k_{0} \left\{ \frac{-3D(x_{s}-x)}{(D^{2}+r^{2})^{5/2}} - \frac{-3D_{r}(x_{r}-x)}{(D_{r}^{2}+r_{r}^{2})^{5/2}} \right\}$$

$$\frac{\partial \{\Delta U_{z}\}}{\partial y} = k_{0} \left\{ \frac{-3D(y_{s}-y)}{(D^{2}+r^{2})^{5/2}} - \frac{-3D_{r}(y_{r}-y)}{(D_{r}^{2}+r_{r}^{2})^{5/2}} \right\}$$

$$\frac{\partial \{\Delta U_{z}\}}{\partial z} = k_{0} \left\{ \frac{2D_{2}-r_{2}}{(D^{2}+r^{2})^{5/2}} - \frac{2D_{r}-r_{r}}{(D_{r}^{2}+r_{r}^{2})^{5/2}} \right\}$$

$$\frac{\partial \{\Delta U_{z}\}}{\partial k_{0}} = \left\{ \frac{D}{(D^{2}+r^{2})^{5/2}} - \frac{D_{r}}{(D_{r}^{2}+r_{r}^{2})^{5/2}} \right\}$$
(2)

さらに、 圧力変化 ΔP にともなう球状力源の体積変化 ΔV は

$$\Delta V = \frac{\pi}{(1-V)} k_0 \tag{3}$$

で計算される.ただし、Vはポアソン比である.ここで はV=0.25とした.各データセットに対する力源体積変 化は、それぞれ推定されたパラメーター k_0 に(3)式を適 用した.