資料1-2

伊方発電所 地震動評価

資料集 |

地震動評価上のジョグの考え方について

平成25年8月28日

四国電力株式会社

ジョグの定義(杉山(2003),狩野・村田(1998))

〇「活断層(厳密にはそのトレース)は、多くの場合、屈曲、分岐、雁行(ステップ及び オーバーステップ)などの、形状の上での非単調な構造を伴う。このような非単調な構造は、 ジョグあるいは幾何学的バリアと呼ばれている。」(杉山(2003))

〇「異なる岩体を断層が切断していくとき,岩体の内部摩擦角の相違や,地下構造の相違な どによって,地表での断層の露頭線は屈曲することになる。このような構造が,屈曲あるい はジョグである。」(狩野・村田(1998))

中央構造線における断層の屈曲, ステップ

〇中央構造線は右横ずれ断層であり,右屈曲は引張性ジョグ,左屈曲は圧縮性ジョグと位置 づけられる。

ジョグと断層破壊の伝播(Lettis et al., 2002)

「Influence of Releasing Step-Overs on Surface Fault Rupture and Fault Segmentation: Examples from the 17 August 1999 Izmit Earthquake on the North Anatolian Fault, Turkey」(Lettis et al., 2002) 〇1868年~1999年に国内外で発生した30個の歴史地震(全て横ずれ断層)を用いて検討

〇ジョグ両側の活断層トレース間の距離をステップ幅として計測

Oジョグのステップ幅、断層のオーバーラップ長さ、オーバーラップ部の面積、および1回あたりの横ずれ 変位量について整理して断層破壊の連動について検討

Oジョグのステップ幅が約4kmを超えると、地震発生時の断層破壊はジョグを越えて伝播していない。

ジョグと断層破壊の伝播(Wesnousky, 2006)

[Predicting the endpoints of earthquake raptures] (Wesnousky, 2006)

〇1857年~2002年に国内外で発生した22個の歴史地震(全て横ずれ断層)を用いて検討 〇ジョグ両側の活断層トレース間の距離をステップ幅として計測 〇ジョグのステップ幅が5km以上になると地震発生時の断層破壊はジョグを越えて伝播していない。

中央構造線断層帯における破壊の伝播に関する検討

ジョグと地表の横ずれ変位量の変化(Elliott et al.,2009)

「Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers」 (Elliott et al., 2009) O1944年~2002年に発生した7個の歴史地震(全て横ずれ断層)を用いて検討 Oジョグ両側の活断層トレース間の距離をステップ幅として計測 Oジョグのステップ幅が大きいと地表の横ずれ変位量がゆっくりと減少し, ステップ幅が小さいと横ずれ 変位量が急激に減少する傾向がある。

Figure 1. Map of surface trace and slip distribution of the 1997, M 7.1, Zirkuh, Iran earthquake (after *Berberian et al.* [1999]), displaying common characteristics of many strike-slip ruptures. Data points in slip graph represent field measurements. Connecting line represents the slip envelope used to calculate gradients at locations specified in the map. Note the small-scale fluctuations in slip measured along smooth fault strands. Inset sketches illustrate the disparity in geometry among stepovers. Whereas the schematic geometry of a stepover (the ideal case) displays simple geometry, natural systems commonly lack uniform and straight-forward behavior.

Figure 2. Stepovers plotted by slip gradient against width. Each point represents a stepover; numbers reference Table 1. Note that no stepovers wider than 4 km allow rupture to pass through, in agreement with previous studies. At stepovers which stopped ruptures (solid symbols), within this limiting width, slip gradients are all below 20 cm/km. At all but one of the stepovers which did not serve as barriers (hollow symbols), nupture slip gradients are above 20 cm/km, suggesting that this is a critical value of "suddenness" of slip decrease which may control rupture propagation.

YONDEN

地表変位量とアスペリティ分布(岩城ほか、2006) 「大規模地震に伴う地表地震断層と深部起震断層に関する既存資料の整理とカタログの作成」 (岩城ほか. 2006) ○1968年~1999年に国内外で発生した14個の歴史地震を用いて検討 ○「深部起震断層のすべり量分布は、地表地震断層の変位量分布とは独立して求められているにも関わら ず、アスペリティ分布と地表で変位量が大きかった範囲がよく一致しており、両者には密接な関係があ ることが示唆される。」 (cm) 80⊦ Imperial Valley earthquake Hector Mine earthquake Hyogo-ken Nanbu earthquake (cm) 500 200 Borah Peak earthquake (cm) 300r Duzce earthquake Kocaeli earthquake (cm Superstition Hills earthquake (cm) (cm) Chi-Chi earthquake 10 500

4.10

(cm) 800 400 0 Landers earthquake

第4図 対象地震の地表地震断層に沿った変位量分布と、深部起震断層の破壊領域とアスペリティ分布の比較.個々の図の詳細については、付図を参照のこと。

Fig.4 Comparison of displacement on surface faults and asperity on rupture area. Detail drawings of each earthquake are shown in appendix.

活断層情報と強震動予測(杉山, 2003)

「活断層情報の現状とその活用法 - 強震動予測への貢献の観点から-」(杉山, 2003) 〇1992年~2003年に国内外で発生した7個の歴史地震を用いて検討

〇「破壊の終息域あるいは一時停止域となるジョグの手前に、他より大きくすべる領域、即ち"アスペリ ティが出現する。」

破壊伝播及びすべり量分布と活断層のジョグ・セグメント構造との関係を示す模式図

分岐, 屈曲, 雁行など断層形状の非単調性が大きな「ジョグ」は衝撃に対して強く, 破壊を終息させる"バリア" と対応する。

YONDEN

地震動評価上のジョグの考え方について(まとめ)

〇杉山(2003)に従い、活断層トレースの屈曲(ステップ)、分岐、雁行などの形状の上での非単調な構造をジョグと称す。

- 〇四国北西部の中央構造線断層帯には、東から重信、串沖、伊方沖、三崎 沖にジョグが認められ、各々のステップ幅は約5km、約4km、約1km、約4km である。
- Oジョグのステップ幅が大きいほど断層破壊が停止しやすく,重信ジョグ, 串沖ジョグ,三崎沖ジョグでは地震時に断層破壊が停止する可能性が高い と考えられ,これらでセグメントを区分する。
- 〇地表の横ずれ変位量はジョグのステップ幅が大きいほどゆっくりと,小 さいほど急激に減少する傾向がある。規模によらず,ジョグでは横ずれ変 位量が減少すると考えられる。

Oアスペリティ分布と地表変位量には密接な関係があるので、地表の横ず れ変位量が減少するジョグ以外の部分で、また施設に近い個所にアスペリ ティを設定する。

וחתווחבוי