震源を特定せず策定する地震動に関する 計算業務 報告書

甲 B 第

65

号証

平成23年3月

(財) 地域地盤環境研究所

震源を特定せず策定する地震動に関する計算業務

目次

1.	業務概要	1- 1
2.	2004 年北海道留萌支庁南部地震の面的地震動評価	2- 1
	2.1 はじめに	2- 1
	2.2 震源近傍での面的地震動評価	2- 2
:	2.3 震源パラメータを変えた面的地震動評価	2- 9
	2.4 NFRD 効果の領域に関する考察	2-17
3.	「震源を特定せず策定する地震動」の地震動レベルを検証するための	
	震源断層モデルの設定方法に関する検討	3- 1
	3.1 臨時観測網・気象庁一元化震源による余震分布と断層モデルとの関係	3- 2
	3.2 考察	3-39
	3.3 まとめ	3-44
4.	まとめ	4- 1
付	録	付-1

1. 業務概要

1.1 目的

原子力安全委員会は、平成18年9月19日に「発電用原子炉施設に関する耐震設計審査 指針」(以下「耐震指針」という。)の改訂を行った。

耐震指針では「震源を特定せず策定する地震動」の評価を求めており、当該評価結果に ついての妥当性を検討する必要がある。特に敷地・敷地近傍に耐震設計上考慮する活断層 が認定されていない場合には、地域性を考慮した適切な規模の震源断層を敷地直下に想定 し、その地震動レベルの妥当性を個別に検証する必要がある。

平成 21 年度の「震源を特定せず策定する地震動に関する計算業務」として、①地震動 レベルを検証する基本的な方法を検討、試算を実施した。また、②規模に比べて強い地震 動が記録された 2004 年北海道留萌支庁南部地震(以下「留萌地震」という。)について、 その強震動の生成メカニズムの検討を行った。具体的には、Maeda and Sasatani(2009)に 記載される震源モデル、地下構造モデルを用い、理論的手法と統計的グリーン関数法を用 いたハイブリッド手法によって評価を実施した。その結果、留萌地震は地殻内陸地震とし ては特異な地震ではなく、強震動予測レシピによる予測可能であることが示された。また、 破壊開始点からサイトまでの破壊伝播効果が震源近傍での強震動に大きな影響を与えて いることがわかった。

今年度は、昨年度の結果を踏まえて、以下について検討を行う。

①2004年北海道留萌支庁南部地震の面的地震動評価

②「震源を特定せず策定する地震動」の地震動レベルを検証するための震源断層モデルの設定方法に関する検討

2. 2004年北海道留萌支庁南部地震の面的地震動評価

2.1 はじめに

留萌地震では、震源近傍の K-NET 港町観測点(HKD020)において、Mj6.1の地震規模に対し て経験的に想定される地震動レベルを越える大きな地震動(1000cm/s²以上)が観測された。 昨年度は、留萌地震について、Maeda and Sasatani(2009)に基づき震源近傍観測点である HKD020 の強震動記録を対象にハイブリッド手法を用いた強震動評価を実施した。その結果、 HKD020 に対して破壊伝播効果(NFRD 効果)が大振幅地震動に寄与したことが確認できた。 しかしながら、HKD020 は震源近傍に位置するが、留萌地震における1 観測点にすぎず、得 られた地震動が震源近傍地震動を代表(最大を示す)するものであるかどうかを検証する ことが重要である。

このため今年度は、昨年度得られた震源モデルに基づき、K-NET 港町観測点(HKD020)を含む面的地震動評価を実施し、震源近傍における破壊伝播の影響について検討を行う。

2.2 震源近傍での面的地震動評価

展源近傍での観測記録に基づき、理論的手法と統計的グリーン関数法を用いたハイブリッド手法を用いて、広い周期帯域で精度のある震源近傍の面的地度動評価を行う。なお, 計算領域は 20km 四方程度とし, 震源モデルおよび地盤構造モデルは昨年度の検討結果を参照した。

理論的手法には3次元差分法を用いており、この計算ではGraves (1996) および Pitarka (1999)に準拠した方法を用いている。この手法は、震源断層と対象地点を含む複雑 な地殻・地盤構造を計算機の中でモデル化して、地震動の生成・伝播を理論的に計算する 手法である。具体的には図2.2-1に示すように対象領域を小さなブロックの集合体とし、そ れぞれのブロックに地盤の硬さに応じた物性値を与える。このとき、堆積盆地などの3次 元形状を設定した格子点間隔に応じて表現できる。震源に相当する地殻のブロックに力を 加えると、そこで生じた地震波が波動方程式に基づきブロック間を逐次伝播し、地表に達 した地震動が計算される。震源断層面に相当するブロックに、断層破壊の進行に応じて順 次力を加えてゆくと、大地震に相当する地表面地震動を計算することができる。一方、統 計的グリーン関数法 (釜江・入倉、1990)では、震源理論(ω⁻²スペクトル)に基づいた人工 地震波 (Boore, 1983)を作成し、断層面上に設定した各小断層の人工地震波が全体に広がっ て大地震へと成長する断層破壊過程を考慮して大地震動を作成する。

本検討では震源域近傍の留萌周辺における詳細な3次元地盤構造モデルがないため、こ こでの地盤構造モデルはHKD020の1次元地盤構造モデル(Maeda and Sasatani,2009)を参照 し、表2.2-1に示す地盤構造モデルを3次元地盤構造モデルに拡張した。なお、Maeda and Sasatani (2009)とは異なり、震源域(深さ3.8km以深)の地震波速度および密度を変えてい る。図2.2-2に計算に用いたS波速度構造モデルを示す。表2.2-2に3次元差分の計算に用い たパラメータを示す。計算領域は20km×20kmを0.025kmグリッドとし、地表面で約64,000グ リッド点の計算を行っている。なお、3次元差分の計算をする場合、計算の都合上、Vs=160 ~500m/sの表層部分は下層のVs=700m/sに置き換えた。一方、統計的グリーン関数法(釜江・ 入倉,1990)の計算には表2.2-1に示す表層部分を用いている。表2.2-3に震源パラメータ(ア スペリティ領域)、表2.2-4に破壊開始点座標およびアスペリティの相対位置を示す。本検 討ではMaeda and Sasatani(2009)で推定された強震動生成領域(SMGA: Strong Motion Generation Area)をアスペリティ領域と考え、アスペリティ領域のみによる強震動評価を 行った。なお、短周期波形と長周期波形をハイブリッド合成する場合の遷移周期は昨年度 の成果を参考に0.16~0.25秒(4~6Hz)とした。

まず、図2.2-3(1)にHKD020の計算波形を観測波形と比較して示す。図2.2-3(2)に疑似速

2-2

度応答スペクトルの比較も示す。参考のため、図中には震源を特定できない地震のスペク トルとして加藤・他(2004)の疑似速度応答スペクトル(以下,加藤スペクトル)を示して いる。計算波形はHKD020の観測波形と良い一致が得られ、震源モデルおよび地盤構造モデ ルの妥当性が確認できた。次に、図2.2-4にハイブリッド法を用いて得られたPGA分布およ びPGV分布を示す。図中の内側の破線で囲まれた領域は設定したアスペリティ領域、外側の 破線で囲まれた領域は2.4章で議論する際に用いた仮定断層面であり、その設定については 2.4章で説明する。PGV分布については、その最大値はHKD020の地点からやや東側に現れて いるが、これは破壊伝播効果による影響である。一方、一般的にはPGAの最大値はアスペリ ティ近傍に現れるが、本検討ではPGV分布と同様に、HKD020のやや東側に現れている。これ は、ハイブリッド合成の遷移周期を通常(約1秒前後)より短周期側(0.2秒前後)まで延 ばしたため、PGAにも破壊伝播効果が現れたためと考える。

図 2.2-1 3 次元差分法におけるメッシュ分割の概念図

Vp	Vs	Density	Depth
km/s	km/s	g/cm ³	km
0.380	0.160	1.6	0.000
0.740	0.300	1.6	0.001
1.380	0.500	2.0	0.003
2.000	0.710	2.0	0.007
3.500	1.850	2.2	1.000
4.493	2.567	2.3	2.000
5.196	3.000	2.7	3.800

表 2.2-1 計算に用いた 1 次元地盤構造モデル

表 2.2-2 3 次元差分の計算に用いたパラメータ

	X方向	Y方向	Z方向		
計算領域	20km	20km	20km		
	0.025km		0.025km	(1-43グリッド)	
グリッド間隔		0.025km	0.050km (44-63グリッド)	(44-63グリッド)	
			0.075km	(64-304グリッド)	

表 2.2-3 酸源パラメータ (アスペリティ領域)

7	面積 S _a (km ²)	4.41
ス	地震モーメント Mag(N·m)	6.53E+16
ŋ	応力降下量 Ds。(MPa)	17.16
テ	ライズタイム(s)	0.4
イ	破壞伝播速度(km/s)	2.7
	すべり角(°)	90

表 2.2-4 破壊開始点座標およびアスペリティの相対位置

破壞開始点緯度(°)	44.0925
破壞開始点経度(°)	141.7374
破壞開始点深さ(km)	5.45
アスペリティ相対位置(strike方向, km)	2.1
アスペリティ相対位置(dip方向, km)	1.4

図 2.2-3(1) HKD020 におけるハイブリッド波形(赤)と観測波形(黒)の比較 左:速度波形,右:加速度波形

上:NS、中:EW、下:UD

図 2.2-3(2) HKD020 におけるハイブリッド波形(赤)と観測波形(黒)による 疑似速度応答スペクトルの比較(青:加藤スペクトル) 左:NS、中:EW、右:UD

(1)PGA 分布 (△:HKD020 地点, ☆:破壞開始点)

図 2.2-4 ハイブリッド法による面的強震動計算結果

図 2.2-5 面的強震動計算による疑似速度応答(PSV)スペクトル(左上から NS, EW, UD) 白実線: 断層最短距離 15km 以内の平均 PSV スペクトル 白破線: 平均 PSV スペクトルの標準偏差

2.3 震源パラメータを変えた面的地震動評価

2.2 章では Maeda and Sasatani (2009)の結果を参考に面的地震動評価を実施した。ここでは、震源パラメータのうち rake (すべり)角および破壊開始点を変えた検討を行う。

Orake 角を変えた場合

図 2.3-1 に HKD020 においてそれぞれ rake 角 60 度, 75 度とした場合の計算波形を観測 記録と比較して示す。なお、参考に 2.2 章で用いた rake 角 90 度の計算波形も示す。HKD020 において rake 角を変えた検討では、計算波形に大きな相違は認められない。次に、rake 角 60 度, 75 度および 90 度の場合の PGA および PGV の面的強震動分布をそれぞれ図 2.3-2, 図 2.3-3 に示す。rake 角を 90 度から 75 度あるいは 60 度に変化させると、PGA および PGV の最大値を示す領域が若干大きくなっている。特に、rake 角が 90 度から 60 度に変化する ことで、破壊進行方向と rake 角が一致し、破壊伝播効果の影響が大きくなったと考えられ る。 rake 角 60 度, 75 度および 90 度の場合の疑似速度応答 (PSV) スペクトルを図 2.3-4 に示す。PSV スペクトルは rake 角による大きな変化はあまり認められない。

〇破壊開始点を変えた場合

rake 角 90 度とし、破壞開始点を変えた(S1 破壞, S2 破壞, S3 破壞)場合の PGA および PGV の面的強震動分布をそれぞれ図 2.3-5, 図 2.3-6 に示す。図から明らかなように S2 破 壞が最も大きな PGA, PGV 分布を示す。これは,破壞開始点がアスペリティ中央下端である ことから,計算波形の位相がアスペリティの中心に対して対称となり,重ね合わせ効果に より大きくなったと考えられる。一方,S1 と S3 が完全に対象にならないのは,破壊伝播速 度にばらつきを与えたためと考える。S1 破壊, S2 破壊および S3 破壊の場合の疑似速度応 答スペクトル(PSV)を図 2.3-7 に示す。先述したように,S2 破壊が最も大きな PSV (EV 成分) を示している。

rake 角(90 度)

図 2.3-1 HKD020 における rake 角 60 度, 75 度, 90 度とした場合の計算速度波形(赤)の相違。黒: 観測速度波形。上から NS, EW, UD。

PGA 分布(rake 角 60 度)

PGA 分布(rake 角 75 度)

PGA 分布(rake 角 90 度)

図 2.3-2 rake 角 60 度, 75 度および 90 度の場合の PGA の面的強震動分布 (△:HKD020 地点,☆:破壊開始点)

PGV 分布(rake 角 60 度)

PGV 分布 (rake 角 75 度)

PGV 分布 (rake 角 90 度)

図 2.3-3 rake 角 60 度, 75 度および 90 度の場合の PGV の面的強震動分布 (△:HKD020 地点, ☆:破壊開始点)

図 2.3-4 rake 角 60 度, 75 度および 90 度の場合の疑似速度応答 (PSV) スペクトル。 左から NS, EW, UD

PGA 分布(S1 破壊)

PGA 分布(S2 破壞)

PGA 分布(S3 破壞)

 図 2.3-5 rake 角 90 度における破壊開始点 (S1, S2, S3) を変えた PGA 分布 (△: HKD020 地点,☆: 破壊開始点)

PGV 分布(S1 破壞)

PGV 分布(S2 破壞)

PGV 分布(S3 破壞)

図 2.3-6 rake 角 90 度における破壊開始点 (S1, S2, S3) を変えた PGV 分布 (△:HKD020 地点, ☆:破壊開始点)

図 2.3-7 rake 角 90 度における破壊開始点 (S1, S2, S3) を変えた 疑似速度応答 (PSV) スペクトル。左から NS, EW, UD。

2.4 NFRD 効果の領域に関する考察

ここでは, 2.3 章の震源パラメータを変えた検討結果に基づき、震源近傍における NFRD 効果の顕著な領域の抽出について検討する。

震源を特定せず策定する地震動を考慮する場合、計算領域で得られた疑似速度応答(PSV) スペクトルの平均化領域が重要である。特に、指針では NFRD 効果を含むように指示されて いる。ここでは大野・他(1998)に従い、面的強震評価結果に基づいて NFRD 効果の領域の抽 出を試みる。彼らによれば断層長さ L で基準化すると、Dip-slip の場合、断層上端を基準 にほぼ±0.25Lの範囲に NFRD 効果が現れるとしている。今回の計算ではアスペリティ領域 のみを仮定しており、背景領域を考慮していないが、大野・他(1998)に従う場合、断層長 さLを設定するためには断層破壊領域が必要となる。このため、図 2.4-1 に示す Maeda and Sasatani(2009)の余糜分布および断層設定を参考にした。ここでは、表 2.4-1 に示すよう に F-net の地震モーメントから Somerville et al. (1999)の経験的関係に基づいて断層面積 (S)を設定し、正方形断層(L=W)を仮定して、断層長さを L=7.76km とした。また、断層上端 は Maeda and Sasatani (2009)の余度分布を参考に 2.8km とした。図 2.4-2 に大野・他 (1998) による NFRD 効果を含む範囲を赤破線で示す。なお、外側の破線で囲まれた領域は仮定した 断層面である。この場合、赤破線領域内には NFRD 効果の領域も含まれているが、図から明 らかなように、NFRD 効果の小さい領域も含まれている。彼らの検討によれば、L±0.25Lの 範囲内に現れる NFRD 効果の領域は 60%程度であることから、PSV スペクトルを平均化する 領域について、その領域の選択をさらに吟味する必要があると考える。

そこで、PGV 距離減衰の考え方の導入を試みた。図 2.4-3 に各破壊開始点ケースの計算 PGV の距離減衰を示す。赤丸は大野・他(1998)による NFRD 効果を含む領域内(図 2.4-2 の 赤破線枠内)の PGV である。図中には司・翠川(1999)による PGV 距離減衰式もあわせて示 している。なお、司・翠川(1999)の PGV 距離減衰式に対して、計算 PGV の距離減衰の傾き が見かけ上、急になっているのは、今回の面的強震動計算においてアスペリティ領域のみ を仮定し、背景領域を考えていないためである。図 2.4-4 に大野・他(1998)の領域内で司・ 翠川(1999)の PGV 距離減衰式の平均+1 σ の PGV を示す領域を斜線で表す。図 2.4-5 に上記 の領域内の PSV を赤実線で、またその平均 PSV を白実線で示す。大野・他(1998)の領域内 で司・翠川(1999)の PGV 距離減衰式の平均+1 σ の PGV を示す領域内の平均 PSV は加藤スペ クトルと同程度となる。同様に、図 2.4-6 に大野・他(1998)の領域内で司・翠川(1999)の PGV 距離減衰式の平均+2 σ の PGV を示す領域を斜線で、図 2.4-7 にその領域内の PSV を赤実 線で、またその平均 PSV を白実線で示す。平均+2 σ の場合、周期によっては加藤スペクト ルを明らかに越える部分が認められる。

図 4.2-1 Maeda and Sasatani (2009)に基づいた断層面の設定

M ₀ (Nm) (F-net)	S(km²) (Somerville)	Mw	L:W (=L/W)	L(km)	W(km)
4.44E+17	60.24	5.70	1	7.76	7.76

ŧ	4	2 - 1	抽震規模	(Mo)	に基づい	いた街	層の	設定
1		· .		(1110)	1	1-1-21	1	1 AL

PGV 分布(S1 破壞)

PGV 分布(S2 破壊)

PGV 分布(S3 破壞)

図 2.4-2 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域

S3 破壞

S1 破壊

図 2.4-4(1) 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域 斜線部分:司・翠川(1999)の距離減衰式(図 2.4-3 参照)の+1 σを超える地点

S2 破壞

図 2.4-4(2) 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域 斜線部分:司・翠川(1999)の距離減衰式(図 2.4-3 参照)の+1σを超える地点

S3 破壊

図 2.4-4(3) 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域 斜線部分:司・翠川(1999)の距離減衰式(図 2.4-3 参照)の+1 σを超える地点

(1)S1 破壞

図 2.4-5(1) 破壊開始点の違いによる PSV (左上から NS, EW, UD) 赤実線:大野・他(1998)の NFRD 効果を含む領域内で、司・翠川(1999)の PGV 距離減衰式 に対して+1 g の PGV を示す領域の PSV 白実線:上記領域内の平均 PSV、白破線:上記領域内の平均 PSV の標準偏差

(2)S2 破壊

(3)S3 破壞

図 2.4-5(3) 破壊開始点の違いによる PSV (左上から NS, EW, UD) 赤実線:大野・他(1998)の NFRD 効果を含む領域内で、司・翠川(1999)の PGV 距離減衰式 に対して+1 g の PGV を示す領域の PSV 白実線:上記領域内の平均 PSV、白破線:上記領域内の平均 PSV の標準偏差

S1 破壞

図 2.4-6(1) 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域 斜線部分:司・翠川(1999)の距離減衰式(図 2.4-4(1)参照)の+2σを超える地点

S2 破壊

図 2.4-6(2) 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域 斜線部分:司・翠川(1999)の距離減衰式(図 2.4-4(2)参照)の+2σを超える地点

S3 破壞

図 2.4-6(3) 破壊開始点の違いによる PGV 分布 赤破線枠内:大野・他(1998)の NFRD 効果を含む領域 斜線部分:司・翠川(1999)の距離減衰式(図 2.4-4(3)参照)の+2σを超える地点

図 2.4-7(1) 破壊開始点の違いによる PSV (左上から NS, EW, UD) 赤実線:大野・他(1998)の NFRD 効果を含む領域内で、司・翠川(1999)の PGV 距離減衰式 に対して+2σの PGV を示す領域の PSV 白実線:上記領域内の平均 PSV、白破線:上記領域内の平均 PSV の標準偏差

(2)S2 破壞

図 2.4-7(2) 破壊開始点の違いによる PSV (左上から NS, EW, UD) 赤実線:大野・他(1998)のNFRD 効果を含む領域内で、司・翠川(1999)の PGV 距離減衰式 に対して+2gのPGVを示す領域のPSV

白実線:上記領域内の平均 PSV、白破線:上記領域内の平均 PSV の標準偏差

(3)S3 破壞

図 2.4-7(3) 破壊開始点の違いによる PSV (左上から NS, EW, UD) 赤実線:大野・他(1998)の NFRD 効果を含む領域内で、司・翠川(1999)の PGV 距離減衰式 に対して+2σの PGV を示す領域の PSV 白実線:上記領域内の平均 PSV、白破線:上記領域内の平均 PSV の標準偏差

参考文献

Boore (1983), D. M., Stochastic simulation of high-frequency ground motions based on seismological models of the radiation spectra, Bull. Seism. Soc. Am., 73, 1865-1894.

Graves, R. W. (1996), Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences, *Bull. Seism. Soc. Am.*, 86, pp. 1091-1106.

釜江克宏・入倉孝次郎・福知保長(1990),地域的な震源スケーリング則を用いた大地震(M 7級)のための設計用地震動予測,日本建築学会構造系論文報告集,416, pp.57-70.

- 加藤研一・宮腰勝義・武村雅之・井上大榮・上田圭一・壇一男(2004), 震源を事前に特 定できない内陸地殻内地震による地震動レベルー地学的調査による地震の分類 と強震動記録に基づく上限レベルの検討ー,日本地震工学会論文,第4巻, 46-86.
- Maeda. T. and T. Sasatani (2009), Strong ground motions from an Mj 6.1 inland crustal earthquake in Hokkaido, Japan: the 2004 Rumoi earthquake, Earth Planets Space, 61, 689-701.
- 大野晋・武村雅之・小林義尚(1998), 観測記録から求めた震源近傍における強震動の方向 性, 第 10 回日本地震工学シンポジウム, 133-138.
- Pitarka, A. (1999), 3D elastic finite-difference modeling of seismic motion using staggered-grid with non-uniform spacing, *Bull. Seism. Soc. Am.*, 89, pp. 54-68.
- 司 宏俊・翠川三郎(1999), 断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距 離減衰式, 日本建築学会構造系論文集, 523, 63-70.
「 (展源を特定せず策定する地震動」の地震動レベルを検証するための 断層モデルの設定方法に関する検討

「特定せず策定する地震動」の計算は、地震調査研究推進本部(2008)の強震動予測レシ ピに基づいて行う。その際、地体構造区分毎の地震規模を検討するため、一昨年度は微小 地震分布(気象庁データ)に基づき地震発生層を求めた。昨年度の検討では、近年発生し た Mj7 クラス及びそれ以下の内陸地殻内地震の震源インバージョン結果から、逆断層の場 合、断層モデルの長さLと断層モデルの幅Wがほぼ同じ値であるとの結果を得ている。さ らに、断層幅 W と地震発生層厚の比較から、断層モデルはほぼ地震発生層内に収まること を確認している。一方、横ずれ断層の場合、震源インバージョン結果から L > W の関係が 認められた。横ずれ断層についても、同様に断層幅と地震発生層厚の検討を行った結果、 断層モデルの幅Wが地震発生層厚より大きく求まっており、その幅が微小地震分布で求め た地震発生層下部を越えてしまう場合がある。

「特定せず策定する地震動」の規模を決める上で,地震発生層と断層幅の関係は重要で ある。このため、近年発生した被害地震に着目し,高精度地震観測で得られた余震分布(こ れ以降,臨時観測網と呼ぶ)及び震源インバージョンによるすべり分布を収集し、断層モ デルの幅Wと地震発生層厚との関係について検討を行なう。 3.1 臨時観測網・気象庁一元化震源による余震分布と断層モデルとの関係

これまでの検討において,地震発生層厚の検討には気象庁1元化震源データを基本情報 としていた。しかしながら,震源決定を行う際,日本国内の地震波速度構造を一律に取り 扱っており,発生した被害地震の地域性等は考慮されておらず,その震源決定精度はあま り高いとは言えない。一方,最近発生した被害地震では,臨時地震観測網が整備され,地 震波速度構造の再決定や余震分布の高精度化が行われている地震が多い。ここでは,臨時 地震観測網で得られた情報をもとに,これまでの余震分布に基づく地震発生層の考え方に ついて整理を行う。

最初に①臨時観測網による再決定された余度分布と断層モデルおよび②気象庁一元化震 源による断層モデルとの関係をそれぞれ示す。気象庁一元化震源に基づく余度分布は、対 象断層面の震源位置を中心に断層に沿った余震が含まれるよう断層直交方向と走向方向の 距離を適宜設定した。①と②の比較において、気象庁一元化震源データによる余度分布は 山本ほか(2008)に倣い、マグニチュード2以上で、プレート等の影響を取り除いたデー タを用いた。また、期間は臨時観測網の余度分布と同じにしている。ただし、兵庫県南部 地度と鹿児島県北西部地震は、山本ほか(2008)の基準による気象庁一元化震源データが 無いため、臨時観測網による余度分布のみを示した。図 3.1・1~3.1・36 に各地震の余度分布 の断面図とともに、山本ほか(2008)による地体構造区分に基づく D10(Area)、D95(Area) と、昨年の検討において用いた度央から 0.3 度以内(震央から約 30km 以内)の余度分布に よる D10(0.3)、D95(0.3)も示した。

余震分布図の右側にはそれらの余震分布(臨時観測網および気象庁一元化震源)のヒス トグラムを,地震波速度構造とあわせて示す。地震波速度構造は震源再決定の際に用いら れたものを示す。論文中にP波速度のみ示されている場合,S波速度構造は示していない。 このため,後述する余震分布と地震波速度構造との検討には,P波速度構造を基本とした。 また,ヒストグラム中には,左側に示す余震分布のD5,D10,D95を示した。

ヒストグラムで示される臨時観測網による余震分布の D10・D95 と、断面図で示される 気象庁一元化震源データによる D10・D95 とを比較すると、ほとんどの余震分布で気象庁 一元化震源データが深くなる傾向にある。

3-2

図 3.1-1 1995 年兵庫県南部地震の臨時観測網による震源分布(余震分布は根本ほか, 1996, 1997 による)。赤い星印は震央を示す。

130°20'

図 3.1-3 1997 年鹿児島県北西部地震の臨時観測網による震源分布(余震分布は Miyamachi et al., 1999 による)。赤い星印は震央を示す。

1997Yamaguchi

131°40' 図 3.1-5 1997 年山口県北部地震の臨時観測網による震源分布。赤い星印は震央を示す。

図 3.1-6 左: 1997 年山口県北部地震の断層モデル(宮腰ほか, 2004)と臨時観測網による 余震分布。赤い星印は震央を示す。

D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布のD10, D95 深さ(昨年度成果)。 右:臨時観測網による余震分布のヒストグラムとP波速度構造(赤実線)。

1997Yamaguchi/1997062518501288-1997121505314943

131°40' 図 3.1-7 1997 年山口県北部地震の気象庁一元化震源データによる震源分布(余震分布は 山本ほか,2008)。赤い星印は震央を示す。

図 3.1-8 左:1997年山口県北部地震の断層モデル(宮腰ほか,2004)と気象庁一元化震源 データによる余震分布(山本ほか,2008)。赤い星印は震央を示す。 D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95深さ。 D10(0.30), D95(0.30):震央から0.3度以内の震源分布のD10, D95深さ(昨年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか,2008)のヒストグラムとP波速度 構造(赤実線)。

2000Tottori/2000101509133624-2000102508240581

図 3.1-11 2000 年鳥取県西部地震の気象庁一元化震源データによる震源分布(余震分布は 山本ほか, 2008)。赤い星印は震央を示す。

図 3.1-12 左: 2000 年鳥取県西部地震の断層モデル(Iwata and Sekiguchi, 2002) と気象 庁ー元化震源データによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。 D10(Area), D95(Area):山本ほか(2008)による地体構造区分内の D10, D95 深さ。 D10(0.30), D95(0.30):震央から 0.3 度以内の震源分布の D10, D95 深さ(昨年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムと Shibutani et al. (2005)による P 波速度(赤実線), S 波速度(青実線)。

図 3.1-13 2003 年宮城県北部地震の臨時観測網による震源分布(余震分布は Okada et al., 2003)。赤い星印は震央を示す。

2003Miyagi/2003072600130782-2003080312373208

図 3.1-15 2003 年宮城県北部地震の気象庁一元化震源データによる震源分布(余震分布は 山本ほか, 2008)。赤い星印は震央を示す。

図 3.1-16 左: 2003 年宮城県北部地震の断層モデル(Hikima and Koketsu, 2003)と気象 庁ー元化震源データによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。 D10(Area), D95(Area): 山本ほか(2008)による地体構造区分内の D10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布の D10, D95 深さ(昨年度成果)。 右: 気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムと Okada et al. (2003)による P 波速度(赤実線), S 波速度(青実線)。

図 3.1-18 左: 2004 年中越地震の断層モデルと臨時観測網による余震分布。赤い星印は震 央を示す。

D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布のD10, D95 深さ(咋年度成果)。 右:臨時観測網による余震分布のヒストグラムとP波速度(赤実線),S波速度(青実線)。

2004Chuetsu/2004102418030011-2004102816211876

図 3.1-19 2004 年中越地震の気象庁一元化震源データによる震源分布(余震分布は山本ほか, 2008)。赤い星印は震央を示す。

図 3.1-20 左:2004 年中越地震の断層モデルと気象庁一元化震源データによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。

D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布のD10, D95 深さ(昨年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムとP波速 度(赤実線),S波速度(青実線)。

130°00' 130°20' 図 3.1-21 2005 年福岡県西方沖地震の臨時観測網による震源分布(余震分布は Uehira et al., 2006)。赤い星印は震央を示す。

2005Fukuoka/2005032010534060-2005053008515020

図 3.1-23 2005 年福岡県西方沖地震の気象庁一元化震源データによる震源分布(余震分布 は山本ほか, 2008 による)。赤い星印は震央を示す。

図 3.1-24 左: 2005 年福岡県西方沖地震の断層モデル(Asano and Iwata, 2006)と気象 庁ー元化震源データによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。 D10(area), D95(Area):山本ほか(2008)による地体構造区分内の D10, D95 深さ。 D10(0.30), D95(0.30):震央から 0.3 度以内の震源分布の D10, D95 深さ(昨年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムと Uehira et al. (2006)による P 波速度(赤実線), S 波速度(青実線)。

図 3.1-26 左: 2007 年能登半島地震の断層モデル(Horikawa, 2008) と臨時観測網による 余震分布。赤い星印は震央を示す。

D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布のD10, D95 深さ(昨年度成果)。 右:臨時観測網による余震分布のヒストグラムと Horikawa (2008)による P 波速度(赤 実線), S 波速度(青実線)。

2007Noto/2007032522412420-2007041810271845

図 3.1-27 2007 年能登半島地震の気象庁一元化震源データによる震源分布(余震分布は山本ほか, 2008 による)。赤い星印は震央を示す。

図 3.1-28 左: 2007 年能登半島地震の断層モデル(Horikawa, 2008) と気象庁一元化震源 データによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。 D10(Area), D95(Area):山本ほか(2008)による地体構造区分内の D10, D95 深さ。 D10(0.30), D95(0.30):震央から 0.3 度以内の震源分布の D10, D95 深さ(昨年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムと Horikawa (2008)による P 波速度(赤実線), S 波速度(青実線)。

図 3.1-29 2007 年中越沖地震の臨時観測網による震源分布。赤い星印は震央を示す。

図 3.1-30 左: 2007 年中越沖地震の断層モデル(Aoi et al, 2007)と臨時観測網による余 震分布。赤い星印は震央を示す。

D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布のD10, D95 深さ(昨年度成果)。 右:臨時観測網による余震分布のヒストグラムとP波速度(赤実線)。

2007Off-Chuetsu/2007071618101092-2007082917252671

ほか, 2008による)。赤い星印は震央を示す。

図 3.1-32 左:2007年中越沖地震の断層モデル(Aoi et al, 2007)と気象庁一元化震源デ ータによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。 D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95深さ。 D10(0.30), D95(0.30):震央から0.3度以内の震源分布のD10, D95深さ(昨年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムとP波速 度(赤実線)。

図 3.1-33 2008 年岩手宮城地震の臨時観測網による震源分布。赤い星印は震央を示す。

図 3.1-34 左: 2008 年岩手宮城地震の断層モデル(Suzuki et al., 2010)と臨時観測網に よる余震分布。赤い星印は震央を示す。

D10(Area), D95(Area):山本ほか(2008)による地体構造区分内のD10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布のD10, D95 深さ(昨年度成果)。 右:臨時観測網による余震分布のヒストグラムと Suzuki et al. (2010)による P 波速度(赤 実線)、S 波速度(青実線)。

2008lwate-Miyagi/2008061408011640-2008093007590898

図 3.1-35 2008 年岩手宮城地震の気象庁一元化震源データによる震源分布(余震分布は山本ほか, 2008 による)。赤い星印は震央を示す。

図 3.1-36 左: 2008 年岩手宮城地震の断層モデル(Suzuki et al., 2010)と気象庁一元化 震源データによる余震分布(山本ほか, 2008)。赤い星印は震央を示す。 D10(Area), D95(Area):山本ほか(2008)による地体構造区分内の D10, D95 深さ。 D10(0.30), D95(0.30): 震央から 0.3 度以内の震源分布の D10, D95 深さ(咋年度成果)。 右:気象庁一元化震源データによる余震分布(山本ほか, 2008)のヒストグラムと Suzuki et al. (2010)による P 波速度(赤実線)、S 波速度(青実線)。

3.2 考察

断層モデルと余震分布から得られる地震発生層の上端・下端と速度構造との対応関係について考察を行う。なお、地震発生層下端に対応する D95 の深さに関しては、臨時観測網による余震データの総数が少なく、D95 の決定精度が高くないと考えられたことから、ここでは D95 の深さについては気象庁一元化データのみを用いて議論することにする。このため、上端は臨時観測網による D5 や D10 の指標と地震波速度構造との対応関係について検討を行い、次に下端は昨年度検討を行った気象庁一元化震源データから得られるD95 指標と断層モデル下端との対応関係について検討を行う。

3.2.1 地震発生層の上端について

表 3.2-1 に各断層モデルの上端深度と臨時観測網および気象庁一元化震源(臨時観測網と 同じ期間)からそれぞれ求めた D5, D10 深度を示す。図 3.2-1 には断層モデルの上端と臨 時観測網による D5, D10 との関係を,図 3.2-2 には臨時観測網による D5, D10 と,同期 間の気象庁一元化震源による D5, D10 との関係を図示した。図 3.2-1 をみると,断層モデ ルの上端は臨時観測網によって決定された余震分布の D5, D10 に比べて,ばらつきはある がやや浅い傾向を示している。震源インバージョンにおいて断層面を設定する際,余度分 布全体を囲むよう設定することから,余度分布の D5 あるいは D10 に比べて,設定断層面 の上端深度が浅くなっていると考えられる。また,図 3.2-2 では臨時観測網により得られた D5, D10 に比べ、気象庁一元化震源分布による D5, D10 の方が明瞭に深いことが示され ている。以上から,地震発生層の上端深さを検討する場合,気象庁一元化震源データを用 いる場合は注意が必要と考える。

盆源断層	震源断層上端深 度(km)	D5(臨時観測網, km)	D5(気象庁一元化 筬源, km)	D10(臨時観測網, km)	D10(気象庁一元 化震源, km)
1995Hyogo-ken	2.63	3.67	データ無し	4.93	データ無し
1997Kagoshima	2.69	2.08	データ無し	2.41	データ無し
1997Yamaguchi	1.30	3.51	9.40	4.26	9.40
2000Tottori	0.10	2.99	5.84	3.48	6.35
2003Miyagi	0.20	4.12	9,26	4.56	10.11
2005Fukuoka	1.02	1.80	5.73	2.30	7.03
2004Chuetsu	0.26	4.08	2.64	4.71	6.07
2007Off-Chuetsu	3.32	8.11	13.98	8.90	15.15
2007Noto	. 0.31	1.08	0.80	1.86	3.14
2008lwate-Miyagi	0.71	1,37	2.79	1.75	3.53

表 3.2-1 断層モデルの上端深度と臨時観測網および気象庁一元化酸源データによる D5、D10の比較

図 3.2・1 断層モデルの上端と臨時観測網における余震分布から得られた D5, D10 との関係。横軸は断層モデルの上端深度 (km),縦軸は臨時観測網における余震分布から得られた 深さ(km)。左:D5 の深さ。右:D10 の深さ。●は横ずれ断層,■は逆断層を示す。

図 3.2-2 臨時観測網における余震分布から得られた D5, D10 と同期間・同一領域におけ る気象庁一元化震源の余震分布から得られた D5, D10 との関係。横軸は臨時観測網から得 られた深度 (km),縦軸は気象庁一元化震源から得られた深度 (km)。左:D5 の深さ。右: D10 の深さ。●は横ずれ断層,■は逆断層を示す。

次に、D5、D10と検討に用いた地震波速度構造の比較を行う。本検討で収集した地震波 速度構造は必ずしもS波速度について全断層モデルでそろっているわけではないため、こ こではP波速度構造を元に検討を行う。表 3.2-2に示すように、臨時観測網による余震分布 のD5、D10と地震波速度構造とを比較すると、D5~D10ではP波速度 5.5~5.8km/s に対 応することが示された。このことは、気象庁一元化震源による D5 や D10を用いるよりも、 詳細な地震波速度構造情報を利用すれば、地震発生層の上端をより高精度に決定出来る可 能性を示唆しているものと考える。

銀源断層	D5におけるVp(km/s)	D10におけるVp(km/s)			
1995Hyogo-ken	2.20	5.50			
1997Kagoshima	5.66	5.66			
1997Yamaguchi	6.00	6.00			
2000Tottori	5.53	5.53			
2003Miyagi	6.30	6.30			
2005Fukucka	5.50	6.00			
2004Chuetsu	6.00	6.00			
20070FT	6.20	6.20			
2007Noto	5.50	5.50			
2008Iwate-Miyagi	5.67	5.67			
最小值	2.20	5.50			
最大值	6.30	6.30			
平均值	5.46	5.84			

表 3.2-2 臨時観測網における余震分布の D5, D10 深度での P 波速度

3.2.2 地震発生層の下端について

表 3.2・3 に今回検討に用いた断層モデルの下端と気象庁一元化震源から得られた D95 を 示す。D95 は山本ほか(2008)による地体構造区分に基づくD95(D95(Area)),右側は震 央から 0.3 度以内の領域に含まれる余震分布から得られたD95(D95(0.3))を用いた。図 3.2・3 に断層モデル下端深度とD95 との関係を示す。横ずれ断層タイプの場合,余震分布の D95 よりも断層モデル下端の方が深い傾向が認められる。図 3.2・4 では横軸は断層モデルの 長さ(L)を幅(W)で除した値(L/W),縦軸は断層モデルの下端深度をD95の深度で除した値 (断層下端/D95)を用いてこれらの関係を示した。すなわち,横軸(L/W)が1よりも大きい ことは断層の長さ(L)が走向方向に卓越していることを示し,縦軸(断層下端/D95)が1よ りも大きいことは余震分布のD95 よりも断層モデル下端の方が深いことを示す。全体をみ るとばらついているが,横ずれ断層についてみると,正の相関がみられ,断層の長さが走 向方向に卓越するほど,断層モデル下端がD95をより深くなる傾向がみられる。

表	3.2-3	断層モデ	ルの	下端深度と	2	D95 深度
---	-------	------	----	-------	---	--------

民政時用	断層タイプ	健央から0.3度 内のD95	地帯構造区分 におけるD85	斷層極0cm)	断用县さ(km)	断册下绍0an)	断暦長さ/断 唐幅	斷層下端 /D95(0.3)	断股下站 /D9SArea
1995Hyogo-ken	SS	15.45	16,58	20.5	57,A	23,13	2,80	1.50	1.39
1897Kagashima	SS	11.60	12.21	10	12	12.51	1.20	1.08	1.02
1897Yamaguchi	SS	18,44	17,60	14	8	15,30	0.57	0.83	0.85
2000Tottori	SS	13.11	17.90	17.6	28	17.70	1.59	1,35	0.89
2003Miyagi	RF	14.07	21.92	10	18	7.68	1.80	0,55	0.35
2005Fukuoka	S S	14.65	15,03	18	26	18,99	1.44	1,30	1.26
2004Chuetsu	RF	19.83	23.28	21	33	17,67	1.57	0.89	0.76
2007Off-Chuctsu	RF	23.99	23.28	24	30	19.38	1.25	0.81	0.83
2007Nato	RF	11.38	15.41	20	22	17.63	1,10	1.55	1.14
2008lwata-Miyagi	RF	11,27	13,87	18	40	12,29	2,22	1,09	0.89

図 3.2-3 断層モデル下端深度と気象庁一元化震源による余震分布から得られた D95 との 関係。横軸は断層モデル下端深度(km),縦軸は気象庁一元化震源による余震分布から得ら れた D95 深度(km)。左:山本ほか(2008)による地体構造区分に基づく D95。右:震央 から 0.3 度以内の領域に含まれる余震分布から得られた D95。●は横ずれ断層,■は逆断 層を示す。

図 3.2-3 断層モデルの長さ・幅比と気象庁一元化震源から得られた D95・断層モデル下端 比との関係。横軸は断層モデルの長さを幅で除した値,縦軸は D95 深度を断層モデル下端 深度で除した値を示す。左:山本ほか(2008)による地体構造区分に基づく D95,右:震 央から 0.3 度以内の領域に含まれる余震分布から得られた D95。●は横ずれ断層,■は逆 断層を示す。`

3.3 まとめ

近年発生した被害地震を対象に、震源インバージョンで求められた断層モデルと、その 近傍において臨時観測網で高精度に決定された余震分布、また、臨時観測網と同時期・同 一領域の気象庁一元化震源、地体構造区分帯、震央から 0.3 度以内の領域における気象庁一 元化震源の余震分布から D5 や D10, D95 を求めた。

・気象庁一元化震源による余震分布は、臨時観測網における余震分布よりも深くなる傾向が示された。

・臨時観測網による余度分布から得た D5~D10 に対応する P 波速度は 5.5~5.8km/s を示し,詳細な地震波速度構造から地震発生層の上端をより高精度に決定出来る可能性が示唆された。

・各 D95 と断層モデルの下端とを比較すると,特に横ずれ断層では,その断層下端は D95 超える傾向にあることが示された。この傾向は,断層が走向方向に長くなるほど顕著になる。

以上から,地震発生層上端は物理探査等による地震波速度構造から,下端は気象庁一元 化震源の D95 により定義できる可能性がある。なお,走向方向に卓越した横ずれ断層下端 は,地震発生層下端を超える傾向にある。しかしながら,今回の結果は事例数が少ない中 での結果であり,定量的な評価のために今後のデータの蓄積が望まれる。 引用文献

- 岩田知孝・関口春子(2002),2000 年鳥取県西部地盤の震源過程と震源域強震動,第11回 日本地震工学シンポジウム,125-128.
- Miyakoshi, K., T. Kagawa, H. Sekiguchi, T. Iwata, and K. Irikura, 2000, Source characterization of inland earthquakes in Japan using source inversion results, Proc. 12th World Conf. Earthq. Eng., Auckland, New-Zealand, 8pp (CDROM).
- Miyamachi, H., Iwakiri, K., Yakiwara, H., Goto, K. and Kakuta, T. (1999): Fine structure of aftershock distribution of the 1997 Northwestern Kagoshima Earthquakes with a three-dimensional velocity model, EPS, 51, 233-246.
- Sekiguchi, H. Irikura, K. and Iwata, T. (2002): Source inversion for estimating the continuous slip distribution on a fault introduction of Green's functions convolved with a correction function to give moving dislocation effects in subfaults, Geophysical Journal International, 150, 377-390.
- Shibutani1, T., Katao, H. and Group for the dense aftershock observations of the 2000 Western Tottori Earthquake (2005): High resolution 3-D velocity structure in the source region of the 2000 Western Tottori Earthquake in southwestern Honshu, Japan using very dense aftershock observations, EPS, 57, 825-838.
- 山本容維・宮腰研・入倉孝次郎・釜江克宏・藤原広行(2008):地体構造を考慮した地殻内 における地盤発生層の層厚に関する検討,日本地盤学会 2008 年秋季大会予稿集, X1-010.

4.まとめ

2004 年北海道留萌支庁南部地震の震源モデルを対象に面的地震動評価を実施するとと もに、破壊開始点を変えた NFRD 効果について検討を行った。その結果、断層上端側で断 層最短距離約 5km 以内に大きな地震動が現れることが確認できた。本検討では HKD020 の 観測記録を上回る PGV が他の地点で得られている。ただし、検討では HDK020 の地盤構造 モデルを仮定して、それを 3 次元的に拡張していることに注意が必要である。一方、昨年 度の検討では断層最短距離約 10km 以内について強震動の平均領域と考えたが、今回のよ うにアスペリティが浅く、かつ、地震規模が小さい場合は、NFRD 効果の現れる領域は小さ くなることが確認され、NFRD 効果の領域については地震規模やそのメカニズムに応じた検 討が必要である。このため本検討では、大野・他(1988)による NFRD 効果を含む範囲に対し て、司・翠川(1999)の距離滅衰式を組み合わせた提案を行った。今後は、他の地震(例え ば、横ずれ断層) について同様な検討を行い、NFRD 効果の現れる領域の抽出に関する検証 が必要と考える。

「特定せず策定する地震動」の規模を決める上で、地震発生層と断層幅の関係は重要であるこ とから、近年発生した被害地震に着目し、臨時余震観測で得られた余震分布(これ以降、臨時 観測網と呼ぶ)及び震源インバージョンによるすべり分布を収集し、断層モデルの幅Wと地震 発生層厚との関係について検討を行った。その結果、気象庁一元化震源による余震分布は、臨 時観測網における余震分布よりも深くなる傾向が示された。また、臨時観測網による余震分布 から得た D5~D10 に対応する P 波速度は 5.5~5.8km/s であった。さらに、各 D95 と断層モ デルの下端とを比較すると、特に横ずれ断層では、その断層下端は D95 超える傾向にあるこ とが示された。以上から、地震発生層上端は物理探査等による地震波速度構造から、下端は気 象庁一元化震源の D95 により定義できる可能性がある。なお、走向方向に卓越した横ずれ断 層下端は、地震発生層下端を超える傾向にある。しかしながら、今回の結果はその事例数が少 ない中での結果であり、定量的な評価のために今後のデータの蓄積が望まれる。 余震分布の時間変化

ここでは、気象庁ー元化展源データに対しては、地震の発生前後で余震分布の深度に変 化が見られるかどうかを検討した。使用した震源は山本ほか(2008)による選択基準の気 象庁ー元化震源である。地震発生前後で十分な震源データのある事例が少ないため、明瞭 な対応関係を読み取ることは困難である。東北地方の地震を除くと、地震発生後の余震分 布は浅くなる傾向にある。鳥取県西部地震・中越地震・岩手宮城地震では、地震発生前は 本震付近や本震よりも深い部分での震源分布が認められ、地震発生以降より浅い部分にま で震源分布が広がる。

付図1 左:2000年鳥取県西部地震の震源断層(Iwata and Sekiguchi, 2002)と余震分布 (山本ほか, 2008による気象庁一元化震源)。赤い星印は震央を示す。D10(Area), D95(Area) は山本ほか(2008)によるD10, D95 深さ, D95(0.30), D95(0.30)は震央から 0.3 度以内 の震源分布のD10, D95 深さ。右:余震分布のヒストグラムとShibutani et al. (2005)に よるP波速度構造(赤実線)とS波速度構造(青実線)。上:地震発生前。下:地震発生後。

付図 2 左: 2003 年宮城県北部地震の震源断層(Hikima and Koketsu, 2003)と余震分布
(山本ほか, 2008 による気象庁一元化震源)。赤い星印は震央を示す。D10(Area), D95(Area)
は山本ほか(2008)による D10, D95 深さ, D10(0.30), D95(0.30)は震央から 0.3 度以内の震源分布の D10, D95 深さ。右:余震分布のヒストグラムと Okada et al. (2003)による P 波速度構造(赤実線)とS 波速度構造(青実線)。上:地震発生前。下:地震発生後。

付図4 左:2007年能登半島地震の震源断層(Horikawa, 2008)と余震分布(山本ほか, 2008)による気象庁一元化震源)。赤い星印は震央を示す。D10(Area),D95(Area)は山本ほか(2008)によるD10,D95深さ,D10(0.30),D95(0.30)は震央から0.3度以内の震源分布のD95深さ。右:余震分布のヒストグラムとHoriwaka (2008)によるP波速度構造(赤実線)とS波速度構造(青実線)。上:地震発生前。下:地震発生後。

付図 5 左:2007年中越沖地震の震源断層(Aoi et al. 2007)と余震分布。赤い星印は震央 を示す。D10(Area), D95(Area)は山本ほか(2008)による D10, D95 深さ, D10(0.30), D95(0.30)は震央から 0.3 度以内の震源分布の D10, D95 深さ。右:余震分布のヒストグラ ムと P 波速度構造(赤実線)と S 波速度構造(青実線)。上:地震発生前。下:地震発生後。

付図 6 左: 2008 年岩手宮城地震の震源断層(Suzuki et al., 2010)と余震分布(山本ほか, 2008 による気象庁一元化震源)。赤い星印は震央を示す。D10(Area), D95(Area)は山本ほか(2008) による D10, D95 深さ, D10(0.30), D95(0.30)は震央から 0.3 度以内の震源分布の D10, D95 深さ。右: 余震分布のヒストグラムと Suzuki et al. (2010) による P 波速度構造(赤実線)とS 波速度構造(青実線)。上: 地震発生前。下: 地震発生後。