短周期レベルをパラメータとした 地震動強さの距離減衰式

片岡 正次郎1・佐藤 智美2・松本 俊輔3・日下部 毅明4

 ¹正会員 国土交通省 国土技術政策総合研究所地震防災研究室 主任研究官 (〒305-0804 茨城県つくば市旭1) E-mail: kataoka-s92rc@nilim.go.jp
 ²正会員 大崎総合研究所 地震動部 主任研究員 (〒100-0011 東京都千代田区内幸町2-2-2 富国生命ビル) E-mail: toshimi.satoh@shimz.co.jp
 ³正会員 国土交通省 国土技術政策総合研究所地震防災研究室 研究官 (〒305-0804 茨城県つくば市旭1)
 ⁴正会員 国土交通省 国土技術政策総合研究所地震防災研究室 室長 (〒305-0804 茨城県つくば市旭1)

大規模地震を含むマグニチュード5以上の地震の強震記録約11,000波を用いて,地震動の最大加速度, 最大速度,SI值,計測震度及び加速度応答スペクトルの距離減衰式を作成した.この距離減衰式は,モー メントマグニチュードと震源距離のほか,スペクトルインバージョンにより推定された加速度震源スペク トルの短周期レベルをパラメータとした回帰式である.短周期レベルをパラメータとした場合には,そう でない場合と比較して,顕著にばらつきの小さい距離減衰式が得られた.また,短周期レベルと地震モー メントとの関係を整理し,その地域性を考察するとともに,地震のタイプごとの関係式を提案した.

Key Words: attenuation relationship, short period level, strong ground motion, variance

1. はじめに

地震動の最大加速度,最大速度や応答スペクトル の距離減衰式^{1),2)}は,対象地点における地震動強さ, あるいは地震動強さの分布を簡便に推定することが できるため,設計地震力の設定や地震被害想定に広 く活用されている.近年では同じ目的に統計的グリ ーン関数法³⁾やハイブリッド法⁴⁾も用いられるように なってきているが,比較できる強震記録がない場合 には推定結果の検証として距離減衰式との比較^{5),7)} が行われている.距離減衰式による地震動強さの推 定では,複雑な震源過程や地盤構造の影響を考慮す ることはできないが,実際に観測された地震動強さ に直接基づいたものであることから,距離減衰式は 依然信頼性の高い地震動推定手法の一つである.

距離減衰式は一般に、地震の規模を表すパラメー タ (マグニチュード) と震源距離などの距離のパラ メータを与えて地震動強さを推定するものであるが、 それに加えて震源深さをパラメータとしたもの⁸⁾⁻¹⁰⁾ や、内陸地震やプレート境界地震など地震のタイプ を考慮したもの⁹⁾⁻¹¹⁾もある.これらは、震源深さや 地震のタイプによる地震動強さの違いを考慮するこ とによって精度の向上を目指したものである.

同じマグニチュードの地震でも、震源深さや地震 のタイプによって地震動強さが異なる原因としては、 伝播経路の影響のほか、応力降下量の違いが挙げら れる⁹⁾.一般に、震源が深いほど応力降下量が大き くなる傾向があることや、スラブ内地震の応力降下 量がプレート境界地震よりも大きいことが明らかに なってきている^{12),13)}.

一方,地震の発生地域によって応力降下量に特徴 があることも指摘されている¹²⁾⁻¹⁵⁾.このような応力 降下量の地域性を考慮する方法として,地域ごとに 強震記録を分類して距離減衰式を作成することも考 えられるが,大地震の強震記録が得られていない地 域では,作成した距離減衰式の適用範囲が限定され ることになる.

以上のような背景から,震源深さ,地震のタイプ, 地域による応力降下量の違いを直接的に考慮するた めに,著者らはスペクトルインバージョンにより応 力降下量を推定し¹⁵⁾,それをパラメータとした最大 加速度,最大速度,加速度応答スペクトルの距離減 衰式を作成した¹⁶⁾. ただし,この距離減衰式は中小 規模(気象庁マグニチュード*M*_Jが6.9以下)の地震 を対象としたものであり,I種地盤と工学的基盤(S 波速度700[m/s]程度)の地盤補正係数しかないため, 適用範囲が限られている.

上記の研究では応力降下量の代わりに,加速度震 源スペクトルの短周期レベル(以下,単に短周期レ ベルとよぶ)をパラメータとした距離減衰式も作成 されている.短周期レベルは,想定地震の震源モデ ルを設定する際にアスペリティの大きさや応力降下 量を規定するパラメータとして最近よく用いられて おり^{17),18)},震源過程が複雑になる大規模地震につい ては,断層面全体が放出する短周期波動エネルギー の大きさを表現するパラメータとして応力降下量よ りも適切である.

本研究では、1978年宮城県沖地震以降の大規模地 震を含めた強震記録約11,000波を用いて、個々の地 震の短周期レベルを推定するとともに、短周期レベ ルをパラメータとして、地震動の最大加速度、最大 速度、SI値、計測震度及び加速度応答スペクトルの 距離減衰式を作成した.また、それぞれの距離減衰 式について、3つの地盤種別、工学的基盤(S波速度 700[m/s]程度)を対象とした地盤補正係数を算出し た.この距離減衰式は、対象となる地震の短周期レ ベル、地点ごとの地盤特性の違いを考慮した、高精 度かつ簡便な地震動強さの推定を可能とするもので ある.

また,推定した短周期レベルの地域性や地震のタ イプによる違い,短周期レベルにより距離減衰式か ら推定される地震動強さがどのように変化するかを 示すとともに,短周期レベルをパラメータとしない 距離減衰式との比較に基づき,距離減衰式のばらつ きについて考察した.

2. データ

(1) 強震記録

距離減衰式の作成には、日本周辺で発生した1978 年6月~2003年9月の地震で得られた強震記録から、 次の(a)~(f)の条件に従って選択したデータを用いた. (a)計器特性が周期0.1~3秒でフラットまたは補正済

みの記録

(b)内陸地震と日本海東縁の地震ではモーメントマグ ニチュードM_w 5.0以上(三宅島,新島,伊豆周辺 の群発地震はM_w 5.5以上,内陸地震は4.(3)で 述べる解析上の制約からM_w 4.9の地震を1つだけ

図-1 距離減衰式の作成に用いた全地震(1978年6月~ 2003年9月)の震央位置とメカニズム解

表-1 距離減衰式の作成に用いた地震,観測点,波形の数

	内陸地震	海溝性地震
地震数	47	136
観測点数	961	1050
波形数	5160	5882

含む),他の海溝性地震ではM_w 5.5以上

(c)震源深さ120[km]以下

- (d)海溝性地震に対しては、火山フロントより東の地 震では火山フロントより東で観測された記録、火 山フロントより西の地震では火山フロントより西 で観測された記録のみ選択
- (e)福島・田中(1992)のM_wをパラメータとした距離減 衰式¹⁹⁾により,当該地震の最大加速度が10[cm/s²] 以上と推定される地点での記録
- (f)当該地震の震源距離(または断層面最短距離)が 250[km]以下の地点での記録

これらの条件により選択されたデータを全国の内 陸地震と海溝性地震に分類したデータセットを作成 し、それぞれについて距離減衰式を作成した.この うち(d)の条件は、火山フロント周辺で地震波の減衰 特性が大きく変化する²⁰⁻²²⁾ことを考慮したものであ る.対象地点が火山フロントを挟んで震源と反対側 に位置する場合、海溝性地震の距離減衰式は適用範 囲外となるため、減衰特性の変化に応じた補正²³⁾等 が必要となる.また、(e)の条件は強震計のトリガー レベルの影響を避けるために設定したものである²⁾.

上記の強震記録が得られた全地震の震央位置(気象庁による)とメカニズム解(Harvard大学,防災科学技術研究所による)を図-1に示す.表-1に地震タイプと地域別の地震数と波形数を,図-2に強震記録が得られた地震のモーメントマグニチュード M_w と断層面最短距離 X [km]との関係を示す.ここで,X は断層モデルが提案されている地震(表-2)についてはその断層面からの最短距離,他の地震は気象庁発表の震源からの距離である.

また,各地震の M_w はできるだけ正確な値とする ため,**表-2**の地震については断層モデルから求め られた地震モーメント M_0 [Nm],その他の 1997 年以 降の地震については防災科学技術研究所,1996 年 以前の地震については Harvard 大学が推定した M_0 から,次の定義式により算出した.

$$M_w = (\log M_0 - 9.1) / 1.5 \tag{1}$$

表-2 断層面最短距離とモーメントマグニチュードの算 出に断層モデルを用いた地震のリスト

	M_J	M_w	$A [\text{Nm/s}^2]$
1978年宮城県沖地震 ²⁴⁾	7.4	7.6	1.01×10^{20}
1982年浦河沖地震 ²⁵⁾	7.1	6.9	4.04×10^{19}
1982年茨城県沖地震 ²⁶⁾	7.0	6.9	2.48×10^{19}
1983年日本海中部地震 ²⁷⁾	7.7	7.9	5.62×10^{20}
1983年日本海中部地震余震 ²⁸⁾	7.1	6.8	8.18×10^{19}
1987年千葉県東方沖地震 ²⁹⁾	6.7	6.7	2.39×10^{19}
1990年伊豆半島近海地震30)	6.5	6.3	1.35×10^{19}
1993年釧路沖地震 ³¹⁾	7.5	7.6	2.59×10^{20}
1993年北海道南西沖地震32)	7.8	7.6	5.43×10^{20}
1994年北海道東方沖地震 33)	8.2	8.2	1.08×10^{21}
1994年三陸はるか沖地震 ³⁴⁾	7.6	7.7	9.83×10 ¹⁹
1995年兵庫県南部地震 ³⁵⁾	7.3	6.9	4.24×10^{19}
2000年鳥取県西部地震 ³⁶⁾	7.3	6.7	2.51×10^{19}
2001年芸予地震 37)	6.7	6.9	6.60×10^{19}
2003年宮城県沖の地震 ³⁸⁾	7.1	7.1	9.93×10^{19}
2003年宮城県北部の地震 ³⁹⁾	6.4	6.2	3.95×10^{18}
2003年十勝沖地震 40)	8.0	8.2	1.33×10^{20}

(2) 地盤の分類

距離減衰式の地盤補正係数を算出するため,地盤 条件に応じて観測点を分類した.各観測点での PS 検層データから地盤の特性値(基本固有周期)を計 算し,I種,II種,III種の地盤種別に分類した⁴¹⁾.

また,深さ 20[m]までの PS 検層データに S 波速 度 V_s が 600~800[m/s]の範囲にある層があり,その 最上層上面から地表までの地盤の特性値が 0.05[s]以 下となるような観測点を工学的基盤の観測点とした. したがって工学的基盤の観測点は,I 種地盤の観測 点の一部である.

距離減衰式の作成に用いた強震記録が得られた全 観測点 1271 点の位置を図-3 に示す. I 種地盤, II 種 地盤, III 種地盤の観測点はそれぞれ 871, 319, 61 点 であり,地盤種別が不明な観測点が 20 点含まれて いる.工学的基盤の観測点は 31 点あり,地下 30[m] までの平均 S 波速度 (層厚 30[m]を伝播時間で除し たもの) AVS30 の 31 点での平均値は 720 [m/s]とな った.

後述のように、それぞれの観測点の地点補正値か ら、各地盤種別及び工学的基盤における地震動を対 象とした距離減衰式の地盤補正係数が得られる.

3. 短周期レベルの推定

短周期レベルは文献¹⁵⁾と同様,強震記録のS波部 を Fourier 変換して加速度 Fourier スペクトルを求め, スペクトルインバージョン解析⁴²⁾を行い,分離され た震源特性から ω^{-2} モデルに基づいて推定した.

(1) 強震記録

短周期レベルは巨視的断層パラメータであるが, 震源近傍の記録を用いて推定すると,アスペリティ の位置などの影響を受けてしまう.また,ここでは S 波部のみをモデル化するため,2.(1)の強震記 録のうち震源近傍の記録を除き,さらにS波部初動 から *M*_wに依存した継続時間で切り出した波形を以 下の解析に用いた.ここで,震源近傍は既往の距離 減衰式の飽和距離を参考に2×0.005×10^{0.5M}_{*} [km]以下 と定義し,S波部の継続時間*T*_dは既往の回帰式⁴³⁾

$$T_d = 10^{(0.31M_J - 0.77)} \tag{2}$$

において *M_Jを M_w*に読み替えた式の2倍とした.こ こで2倍の余裕を見込んだのは,回帰の誤差を考慮 するとともに,今回用いた地震には2003年十勝沖 地震のような大規模地震も含まれているため,震源 の破壊伝播と反対方向にある観測点では backward directivity により継続時間が長くなることを考慮したものである.

(2) スペクトルインバージョン手法

観測された地震記録の加速度 Fourier スペクトル A(f)は, 震源特性S(f), 伝播経路特性P(f), サ イト特性G(f)の3つのスペクトル成分により構成 されると考えることができる.

$$A_{ij}(f) = S_i(f)P(f)G_j(f)$$
⁽³⁾

ここで, *i* は地震に対する添字, *j* は観測点 (サイト) に対する添字, *f* は周波数である. *P*(*f*) を震源距離 *X*に反比例する実体波の幾何減衰項 1/*X* とQ値*Q*に よる内部減衰項により次式でモデル化する.

$$P(f) = \frac{1}{X} \exp\left(\frac{-\pi f X}{Q\beta}\right) \tag{4}$$

ここで, β[km/s]は伝播経路の S 波速度であり,今回の解析では内陸地震で 3.4[km/s],海溝性地震で 4.0[km/s]と仮定した.

式(4)を式(3)に代入し、両辺の対数をとると次式 が得られる.

$$\log_{10} A_{ij}(f) = \log_{10} S_i(f) - \log_{10} X$$
(5)

$$-\frac{\pi f X}{Q\beta \ln 10} + \log_{10} G_j(f)$$

ここで,

$$b(f) = \frac{\pi f}{Q\beta \ln 10} \tag{6}$$

$$s_i(f) = \log_{10} S_i(f) \tag{7}$$

$$g_i(f) = \log_{10} G_i(f)$$
 (8)

とおくと,式(4)は次のようになる.

$$\log_{10} A_{ij}(f) = s_i(f) - \log_{10} X$$

- b(f)X + g_j(f) (9)

式(9)の $s_i(f)$, b(f), $g_j(f)$ を, 次式で表される 誤差 ERR(f)が最小となるように最小自乗法により 決定する⁴⁴⁾.

$$ERR(f) = \sqrt{\sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{ij} \{R_{ij}(f)\}^2 / \sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{ij}}$$
(10)

$$R_{ij}(f) = \log_{10} A_{ij}(f) - s_i(f) + \log_{10} X$$

+ b(f)X - g_i(f) (11)

ここで、*δ_{ij}*は*i*(*i*=1,2,…,*I*)番目の地震の強震記録

が*j* (*j*=1, 2, …, *J*)番目の観測点に存在する場合に 1, 存在しない場合は 0 である.なお,観測 Fourier ス ペクトルの NS 成分と EW 成分は独立に扱ったため, *I* は地震数×2 である.

この方程式を解くためには拘束条件を付与する必要があるが、ここではある観測点でg_j(f)=0を仮定する拘束条件を与える.はじめに、東日本の海溝性地震と内陸地震では K-NET の IWT009(大東)、西日本の海溝性地震では K-NET の MYZ005(日向)、日本海東縁の地震では電力中央研究所の不老不死を基準観測点とした.そして、西日本の海溝性地震と日本海東縁の地震は、内陸地震の共通観測点のサイト特性を用いて IWT009 を全国共通の基準観測点となるように、サイト特性と震源特性を補正した. IWT009 を全国共通の基準観測点としたのは、4[Hz] 以下ではサイト特性がないと考えられているためである¹³⁾.

浅い内陸地震では海溝性地震と異なり,モホ面ま での厚さに関係した距離(50~150[km])でモホ反 射波が含まれるようになるという性質がある^{45),46)}. 北米の内陸地震では,モホ反射波や Lg 波の影響で, 震源距離 50~150[km]程度までは 1/X,それ以遠で は 1/X^{0.5}の幾何減衰を仮定すると,観測記録の距離 減衰特性をよく表現できることが指摘されている⁴⁶⁾.

ここでは、内陸地震に対して幾何減衰を変化させる距離 X_r を 40~140[km]の範囲で 20[km]刻みに設定し、式(10)で計算される誤差の違いについて検討した結果、 $X_r = 80$ [km]で誤差が最も小さくなった.このため内陸地震については、式(8)の $-\log_{10} X$ を、Xが 80km 以上で $-\log_{10} (80X)^{0.5}$ に置き換えた式を用いた.

(3) 短周期レベルの推定手法

スペクトルインバージョン手法により推定された 震源特性 S(f)を ω^{-2} モデルにより次式でモデル化 する ⁴⁷⁾.

$$S(f) = \frac{R_{\theta\phi} F_S P_{RTITN}}{4\pi\rho \beta^3} \sqrt{\frac{\rho\beta}{\rho_z \beta_z}} \frac{(2\pi f)^2 M_0}{1 + (f/f_0)^2}$$
(12)

ここで、 M_0 は地震モーメント、 f_0 はコーナー周波数、 F_Sは自由地表面の効果を表す定数であり、 $F_S = 2$ とする. P_{RTITN} は水平 2 成分へのエネルギー分配を表 す係数であり、後述のように水平 2 成分のベクトル 和で定義するため、1 とする. ラディエーションパ ターン係数 $R_{\theta\phi}$ については、スペクトルインバージ ョン解析ではスペクトルの対数を対象として分離す ることから、S 波のラディエーションパターン係数 の対数平均値 0.55⁴⁸⁾を用いる. 震源域の S 波速度 β は、プレート境界地震と日本海東縁の地震では 4.0 [km/s]、スラブ内地震では 4.5[km/s]、内陸地震では 3.4[km/s]とした. 震源域の媒質の密度 ρ は、プレー ト境界地震と日本海東縁の地震で 3.0[t/m³]、スラブ 内地震で 3.3[t/m³]、内陸地震で 2.7[t/m³]とした. 基 準観測点 IWT009 での S 波速度 β_z と密度 ρ_z は、対 象とする 4Hz 以下では、極表層の増幅の影響は受け ないと考えられるため、IWT009 の近傍の KiK-net 観測点での地盤情報を参考に $\beta_z = 2.85$ [km/s]、 $\rho_z = 2.65$ [t/m³]とした.

式(12)において,

$$O(f) = \frac{4\pi\rho \ \beta^3 S(f)}{R_{\theta\phi} \ F_S P_{RTITN}} \sqrt{\frac{\rho_z \beta_z}{\rho\beta}}$$
(13)

とおき、NS 成分、EW 成分に対する O(f) を O_{NS} (f)、 $O_{EW}(f)$ として、水平2成分のベクトル和

$$O(f) = \sqrt{O_{NS}(f)^2 + O_{EW}(f)^2}$$
(14)

で震源特性項 O(f) を置き換える. また,

$$M(f) = \frac{(2\pi f)^2 M_0}{1 + (f/f_0)^2}$$
(15)

と置き換え、次式の $J(f_0)$ が最小になるよう、各地 震のコーナー周波数 f_0 [Hz]を改訂準ニュートン法⁴⁹) により推定する⁵⁰.

$$J(f_0) = \int_{f_1}^{f_2} \left(O(f) - M(f) \right)^2 df$$
(16)

ここで、 f_1 、 f_2 は対象とする最小周波数、最大周波数であり、 $f_1=0.2$ [Hz]、 $f_2=4$ [Hz]とした.改訂準ニュートン法は非線形最小自乗法であるため、初期値を仮定することが必要となるが、ここでは後述の式(18)で $\Delta\sigma=5$ [MPa]として f_0 の初期値を求めた.これは日本における地震の応力降下量の平均値である⁵¹⁾.

推定された f_0 から,各地震のM(f)がフラットとなる短周期レベルA [Nm/s²] は次式で求められる.

$$A = 4\pi^2 f_0^2 M_0 \tag{17}$$

表-2 に挙げた地震については、このように推定した*A*を例として表中に示した.

また断層面全体を1つのクラックとみなした場合の応力降下量は次式で計算できる^{52),53)}.

$$\Delta \sigma = M_0 \left\{ f_0 / (4.9 \times 10^4 \beta) \right\}^3$$
(18)

ここで,諸量の単位はそれぞれ $\Delta\sigma$ [MPa], M_0 [Nm], f_0 [Hz], β [km/s]である.

(4) 推定した短周期レベルの特徴

a)内陸地震

上記の手順で推定した短周期レベルについて,地 震モーメントとの関係を整理してみる.図-4は内陸 地震を対象に,各地震の値を点で,log A と log M₀ の関係を1次式で回帰した式を直線で示したもので ある.図の(a)では糸魚川ー静岡構造線で東日本と 西日本に分類しているが,回帰式やばらつきの程度 に地域による違いはあまりないことが分かる.図に は,壇・他(2001)が内陸地震の非一様すべり震源モ デルから短周期レベルを算定し,M₀¹³に比例するス ケーリングを仮定して回帰した式¹⁷⁾を回帰データの 範囲で図示している.

$$\log_{10} A = \frac{1}{3} \log_{10} M_0 + 12.7 \tag{19}$$

ここでは A が $M_0^{1/3}$ に比例する, すなわち応力降 下量を一定とするスケーリングを仮定せずに回帰を 行っており, 結果として M_0 が大きい方が, 式(18) で計算される応力降下量が大きくなる関係となって いる.

図-5 内陸地震の短周期レベルの地域性

図の(b)はすべりのタイプで横ずれ断層,逆断層, 正断層,傾斜断層に分類したものである.ここでは, すべり角が0°~30°,150°~210°,330°~ 360°のいずれかの範囲にある場合は横ずれ断層, 60°~120°は逆断層,240°~300°は正断層,そ れ以外は傾斜断層とした⁵⁴⁾.全ての内陸地震と横ず れ断層の内陸地震を対象とした回帰式はほぼ一致し ており,それぞれ次式で表される.

 $\log_{10} A = 0.51 \log_{10} M_0 + 9.5 \quad (\sigma = 0.38)$ (20)

 $\log_{10} A = 0.57 \log_{10} M_0 + 8.5 \quad (\sigma = 0.30)$ (21)

ここで, σ は標準偏差である. 横ずれ断層のみのデ ータは回帰式まわりのばらつきがやや小さく, 他の タイプの地震はばらつきが大きいことが図からも分 かる.

式(20)に各地震のM₀を代入して得られる内陸地震 の平均的な短周期レベル A_eを基準として,各地震 の短周期レベルの大きさを図示したものが図-5であ る.この図によると,中部地方の地震の短周期レベ ルは大きく,東北・九州地方では小さいなどの地域 差が見られる.また,ほぼ同じ場所で発生している 地震のA/A_eはほぼ同程度であることが分かる.この ような性質を利用して,将来発生する地震の短周期 レベルを予測することはある程度可能と考えられる.

b)海溝性地震

図-6は海溝性地震を対象として、図-4と同様に短 周期レベルと地震モーメントとの関係を示したもの である.図の(a)は地域で分類したものであるが、 東日本(太平洋プレート)と西日本(フィリピン海 プレート)にはあまり差がなく、日本海東縁の海溝 性地震の短周期レベルは、同じ地震モーメントでは

図-6 海溝性地震のAとM₀の関係

それ以外の地域よりもかなり大きいことが分かる. 図示されている全国,東日本,西日本,日本海東縁の海溝性地震に関する回帰式はそれぞれ以下の通りである.

 $\log_{10} A = 0.49 \log_{10} M_0 + 10.0 \quad (\sigma = 0.28) \tag{22}$

 $\log_{10} A = 0.48 \log_{10} M_0 + 10.2 \quad (\sigma = 0.28) \tag{23}$

 $\log_{10} A = 0.41 \log_{10} M_0 + 11.6 \quad (\sigma = 0.17) \tag{24}$

 $\log_{10} A = 0.57 \log_{10} M_0 + 8.9 \quad (\sigma = 0.14)$ (25)

式(20)と式(22)の比較から、内陸地震全体と海溝 性地震全体では、短周期レベルと地震モーメントの 平均的関係には大きな違いはないといえる.

図の(b)では、日本海東縁以外の地震をプレート 境界地震とスラブ内地震に分類して示している.こ こでは、震源深さとプレートの深さとの関係、メカ ニズム解及び文献⁵⁵⁾に基づいて、海溝性地震をプレ ート境界地震とスラブ内地震に分類した.同じ地震

(b) スラブ内地震 図-7 海溝性地震の短周期レベルの地域性

モーメントで比較すると、スラブ内地震の方がプレ ート境界地震よりも短周期レベルが大きい傾向が明 らかである.プレート境界地震とスラブ内地震に関 する回帰式はそれぞれ以下の通りである.

 $\log_{10} A = 0.42 \log_{10} M_0 + 11.1 \quad (\sigma = 0.18) \quad (26)$

$$\log_{10} A = 0.53 \log_{10} M_0 + 9.4 \quad (\sigma = 0.29) \quad (27)$$

式(26),式(27)に各地震の M_0 を代入して得られる 平均的な短周期レベル A_e を基準として,各地震の 短周期レベルの大きさを図示したものが \mathbb{Z} -7である. \mathbb{Z} -7(a)はプレート境界地震,(b)はスラブ内地震を 示している.これらの図によると,ほぼ同じ場所で 発生している地震でも A/A_e はばらついており,内 陸地震ほど地域差が明瞭ではない.震源深さと A/A_e の値との関係を検討した結果,ある程度の相関は見 られたがばらつきも大きく,海溝性地震の短周期レベルを精度良く予測するためには,より詳細な検討が必要と考えられる.

4. 距離減衰式の作成

(1) 地震動強さの指標

 で記述したデータセットの最大加速度 PGA
 [cm/s²],最大速度 PGV [cm/s],SI 値 SI [cm/s],計 測震度 I,減衰定数 5%の加速度応答スペクトル S_A
 (T) [cm/s²]を計算し、それらを地震動強さの指標とした距離減衰式を作成した.

PGA と PGV は水平 2 成分合成の最大値, SI 値は 水平 2 成分それぞれの観測記録に対する一自由度 系の速度応答波形(減衰定数 20%)を計算し, この 応答波形の水平 2 成分合成の最大値を取ったもの を *S_V*(*T*)[cm/s]として次式で計算した.

$$SI = \frac{1}{2.4} \int_{0.1}^{2.5} S_V(T) \, dT \tag{28}$$

ここで T は一自由度系の非減衰固有周期[s]である.

計測震度は水平 2 成分のみから計算した値を用 いる.また,加速度応答スペクトルは水平 2 成分 それぞれの観測記録に対する一自由度系の加速度 応答波形(減衰定数 5%)を計算し,この応答波形の 水平 2 成分合成の最大値を取ったものを *S_A*(*T*) [cm/s²] として *T* = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0[s]の 18 ポイ ントで計算を行った.

(2) 回帰モデル

これらの指標を、3. で推定した短周期レベル A をパラメータとした場合と、震源深さ D [km] を パラメータとした場合について、それぞれ式(29)、 式(30)でモデル化し、ダミー係数を用いた二段階回 帰分析手法⁵⁶⁾で回帰分析を行った.以下では地震 動強さの指標を Y で代表させるが、計測震度 I に ついては I = log₁₀ Y である.

$$\log_{10} Y_{ij} = a_1 M_w + a_2 \log_{10} A - bX + c_0$$

$$-\log_{10} (X + d \cdot 10^{0.5M_w}) + c_j \pm e$$

$$\log_{10} Y_{ij} = a_1 M_w + a_2 D - bX + c_0$$

$$-\log_{10} (X + d \cdot 10^{0.5M_w}) + c_j \pm e$$
(30)

式(18)で計算される応力降下量に震源深さ依存性 がほとんどみられなかった内陸地震のデータにつ いては, *M*_wと *X*のみをパラメータとする次式での 回帰分析も実施した.

$$\log_{10} Y_{ij} = a_1 M_w - bX + c_0$$

$$-\log_{10} (X + d \cdot 10^{0.5M_w}) + c_j \pm e$$
(31)

ここで, *X* は断層面最短距離[km], *Y_{ij}*は *i* 番目の地 震の *j* 番目の観測点における地震動強さ, *c_j* は *j* 番 目の観測点の地点補正値, *e* は標準偏差である.回 帰係数 *a*₁, *a*₂, *b*, *c*₀, *c_k*, *d* は,加速度応答スペク トルを対象とする場合は固有周期 *T* ごとに求めら れる.

幾何減衰項中の $d \cdot 10^{0.5M_w}$ は, 震源近傍での頭打 ちを表す量(飽和距離)である.このうち $0.5M_w$ は既往の研究⁹に従ったものであり,頭打ちの影 響のある距離が断層サイズに依存することを表現 している.また内陸地震については,スペクトル インバージョンの際に求められた X_r =80[km]を用 いて, Xが 80[km]以上では $-\log_{10}(X + d \cdot 10^{0.5M_w})$ の Xを(80X)^{0.5}で置き換えた式を用いた.

(3) 回帰分析

式(29), (30), (31)のいずれの回帰モデルについて も、一段階目の回帰分析では、地震動強さの指標 を式(32)でモデル化し、式中の係数 *S_i*, *b*, *c*_{1*j*} を式 (33)の地震内誤差 *e_{INTRA}* が最小となるように決定し た.

$$\log_{10} Y_{ij} = S_i - \log_{10} (X + d \cdot 10^{0.5M_W}) -bX + c_{1i} \pm e_{INTP.4}$$
(32)

$$e_{INTRA} = \sqrt{\sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{ij} R_{ij}^{2} / \sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{ij}}$$
(33)

$$R_{ij} = \log_{10} Y_{ij} - S_i + \log_{10} (X + d \cdot 10^{0.5M_W}) + bX - c_{1j}$$
(34)

式(10)と同様、 δ_{ij} はi(i=1,2,...,I)番目の地震の強 震記録がj(j=1,2,...,J)番目の観測点に存在する 場合に1、存在しない場合は0である。内陸地震に ついては、 $M_w 5.0$ 以上の地震に限ると地震と観測 点が独立の2つのグループに分かれた(九州の観 測点では九州周辺の地震、九州以外の観測点では 九州周辺以外の地震しか観測されていない)ため、 式(33)が計算できなくなった。ここでは、2.(1) で述べたように内陸地震のデータセットに $M_w 4.9$ の地震(九州でも九州以外でも強震記録があるも の)を1つ含め、内陸地震のデータセットが1つ のグループになるようにして式(33)を計算した。

二段階目の回帰分析では、式(29)の回帰モデルを

用いる場合, Y_{ij} を式(35)でモデル化して重相関解 析により係数 a_1, a_2, c_{2j} を決定した.

$$\log_{10} Y_{ij} + \log_{10} (X + d \cdot 10^{0.5M_w}) + bX$$

= $a_1 M_w + a_2 \log_{10} A + c_{2j} \pm e_{TOTAL}$ (35)

ここで, *e_{TOTAL}* は全体誤差である.式(30)の回帰モ デルを用いる場合は上式の log₁₀ *A* を *D* で置き換え, 式(31)の場合は右辺第 2 項を 0 とした.

係数 d は線形では求められないため、震源近傍 のデータを含む内陸地震のデータセットを対象に、 グリッドサーチによって式(29)の回帰モデルを用い た場合の全体誤差 erorAL が最小となるように最適値 を求めた.ここで式(29)の回帰モデルを採用したの は、短周期レベルの影響を取り除いた上で係数 d が求められるためである.

また係数 c_0 と地点補正値 c_j は、全観測点での c_j の平均が 0となるように次式で定めた.

$$c_0 = \frac{1}{J} \sum_{j=1}^{J} c_{2j} \quad , \quad c_j = c_{2j} - c_0 \tag{36}$$

(4) 距離減衰式の地盤補正係数

2. (2) で示した地盤の分類ごとの補正係数を計算した.例えば、工学的基盤における地震動強さ Y_E は、工学的基盤の観測点での地点補正値 c_j の平均値 c_{Eav} と標準偏差 c_{Esd} を用いて、距離減衰式で得られる地震動強さYから次式で算出することができる.

$$Y_F = Y \times 10^{c_{Eav}} \times 10^{\pm c_{Esd}} \tag{37}$$

ただし、工学的基盤における計測震度 *I_E* には対数をとらない次式を用いる.

$$I_E = I + c_{Eav} \pm c_{Esd} \tag{38}$$

ここでは式(37)の10^{c_{kav}}と式(38)の_{c_{Eav}を地盤補正係 数とよぶ. I種, II種, III種地盤における地震動強さ も,同様の地盤補正係数により算出できる.}

5. 作成した距離減衰式の特徴

(1) 回帰係数

作成した全国の内陸地震及び全国の海溝性地震を 対象とした距離減衰式の回帰係数を, $S_A(T)$ 以外の 4つの指標について表-3に示す.内陸地震は式(29)と 式(31),海溝性地震は式(29)と式(30)の回帰モデルを 用いた場合について示した.

マグニチュード依存性を示す係数 a1 についてみ

ると、短周期レベル A をパラメータとした場合はそうでない場合と比較してかなり小さい値となっており、特に短周期成分の影響が大きい PGA や I についてはその傾向が顕著である.これらの指標については a₂の値が大きく、短周期レベルに依存する度合いが強い.

二段階回帰分析の一段階目で計算される b は,前 述のように係数 d を全モデルで共通にしているため, A をパラメータとするか否かでは変わらない.一方, b は内陸地震と海溝性地震ではかなり異なり,海溝 性地震の方が大きい.伝播経路の特性を示す b は, 本来は地震のタイプの影響を受けない性質のもので あるため,この違いは地震のタイプによる発生位置 の偏りを反映したものと考えられる¹⁶.

(2) 距離減衰式のばらつき

表-3において回帰誤差を比較すると、二段階回帰 分析の一段階目で計算される地震内誤差 *e*_{INTRA} は、*A* をパラメータとしても変わらない、一方、*A*をパラ メータとした場合には次式で計算される地震間誤差 *e*_{INTER} が大幅に小さくなっていることが分かる.

$$e_{TOTAL} = \sqrt{e_{INTRA}^2 + e_{INTER}^2}$$
(39)

そのため、全体誤差 e_{TOTAL} も A をパラメータとした 場合の方が小さい.

例えば内陸地震の PGA の距離減衰式では、A を パラメータとした場合の地震間誤差は0.041,しな い場合は0.110となっている.海溝性地震ではそれ ぞれ0.097,0.159である.したがって、A をパラメ ータとしない場合に含まれる、短周期レベルのばら つきによる回帰誤差の標準偏差は、内陸地震につい ては(0.110²-0.041²)^{0.5} = 0.102、海溝性地震について は(0.159²-0.097²)^{0.5} = 0.126となる.これは、既往の 研究⁵⁷⁾で PGA や PGV の距離減衰式について推測さ れている、応力降下量のばらつきによる回帰誤差の 標準偏差0.10という値とよく一致している.また、 著者らが中小地震の短周期成分に対して概算した値 である0.15¹⁶よりはやや小さく、マグニチュードの 小さな地震ほど応力降下量のばらつきが大きいとい う指摘⁵⁸とも整合している.

4. (3)で示したように、ここでの二段階回帰分 析では各観測点の地点補正値が算出されており、式 (32)から、地震内誤差 *e*_{INTRA}には観測点ごとの増幅特 性の違いによる誤差が含まれていないことが分かる. したがって表-3に示した*e*_{INTRA}は地震基盤における 地震動の地震内誤差とみなすことができる.表-3に 示した地震内誤差が、略算的に地盤特性の影響を除

表-3 距離減衰式の回帰係数と地震内誤差(*e*_{INTRA}), 地震間誤差(*e*_{INTER}), 全体誤差(*e*_{TOTAL}) (a) 内陸地震(式(29): *M*_w, *X*, *A* をパラメータとした場合)

	a_1	a_2	b	c_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	e_{TOTAL}
PGA	0.086	0.801	0.00395	-11.95	0.0065	0.129	0.041	0.135
PGV	0.366	0.619	0.00278	-11.52	0.0053	0.121	0.062	0.136
SI	0.269	0.715	0.00287	-12.69	0.0050	0.119	0.059	0.133
Ι	0.452	1.41	0.0102	-23.61	0.0024	0.253	0.107	0.275
	(b))内陸地震	套 (式(31): A	$M_{w}, X をパ$	ラメータと	した場合)		
	a_1		b	c_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	e_{TOTAL}
PGA	0.595		0.00395	0.03	0.0065	0.129	0.110	0.169
PGV	0.760		0.00278	-2.26	0.0053	0.121	0.100	0.157
SI	0.724		0.00287	-1.99	0.0050	0.119	0.108	0.161
Ι	1.35		0.0102	-2.56	0.0024	0.253	0.209	0.328
	(c))海溝性地	震(式(29)	M_w, X, A	をパラメー	タとした場	 合)	
	a_1	a_2	b	c_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	e_{TOTAL}
PGA	-0.089	0.949	0.00551	-13.43	0.0065	0.147	0.097	0.176
PGV	0.055	0.856	0.00435	-13.88	0.0053	0.144	0.082	0.166
SI	0.041	0.851	0.00423	-13.64	0.0050	0.143	0.080	0.164
Ι	-0.063	1.74	0.0118	-26.53	0.0024	0.282	0.147	0.318
	(d))海溝性地	震(式(30)	M_w, X, D	をパラメー	タとした場	易合)	
	a_1	a_2	b	c_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	e_{TOTAL}
PGA	0.539	0.00668	0.00551	0.51	0.0065	0.147	0.159	0.216
PGV	0.622	0.00602	0.00435	-1.32	0.0053	0.144	0.140	0.201
SI	0.605	0.00566	0.00423	-1.13	0.0050	0.143	0.141	0.200
Ι	1.00	0.0118	0.0118	0.04	0.0024	0.282	0.284	0.400

去した場合のPGAで0.27, PGVで0.24といった値⁵⁷⁾ よりも大幅に小さくなっているのはこのためである. したがって,各地盤種別あるいは工学的基盤に対応 する距離減衰式の回帰誤差は,**表-3**に示した値より も大きく,後述する地盤補正係数の標準偏差を含め たものとなる.

例として、観測されたPGVと一段階目の回帰分析 で得られた距離減衰式による予測値の比(地震内誤 差に相当する)の分布を図-8に示す.1つの地震の 記録しか使用していない観測点(内陸地震で368点, 海溝性地震で453点)については,地点補正値がそ のデータのみで決定されるため,地点補正値を考慮 した距離減衰式による予測値とデータが等しくなる. このため,図-8では地震内誤差のきわめて小さいデ ータが多くみられ,対数正規分布では近似できてい ない部分もあるが,大部分のデータが予測値の0.5

表-4 距離減衰式ごとの地盤補正係数 (括弧内は標準偏差)

(2)内陸地震	(式(29): M_w , 2	X,Aをパラメ	ータ)
	I種地盤	Ⅱ種地盤	III 種地盤	工学的基盤
PGA	1.03 (0.38)	0.95 (0.37)	0.86 (0.34)	0.85 (0.35)
PGV	0.93 (0.31)	1.17 (0.29)	1.39 (0.24)	0.79 (0.28)
SI	0.93 (0.33)	1.18 (0.32)	1.52 (0.26)	0.82 (0.28)
Ι	-0.06 (0.68)	0.12 (0.65)	0.30 (0.54)	-0.22 (0.58)
(b)内陸地震	(式(31): M _w , 2	Xをパラメー	タ)
	I種地盤	Ⅱ 種地盤	III 種地盤	工学的基盤
PGA	0.99 (0.32)	1.01 (0.30)	0.97 (0.25)	0.69 (0.29)
PGV	0.90 (0.27)	1.22 (0.23)	1.53 (0.20)	0.67 (0.23)
SI	0.89 (0.28)	1.23 (0.25)	1.67 (0.22)	0.67 (0.22)
Ι	-0.09 (0.58)	0.16 (0.53)	0.38(0.43)	-0.38 (0.48)
(0)海溝性地震	夏 (式(29): M	w, X, A をパラ	メータ)
	I種地盤	Ⅱ 種地盤	III 種地盤	工学的基盤
PGA	0.93 (0.31)	1.18 (0.30)	1.39 (0.26)	0.66 (0.25)
PGV	0.84 (0.30)	1.36 (0.28)	2.14 (0.23)	0.58 (0.22)
SI	0.83 (0.30)	1.37 (0.28)	2.23 (0.23)	0.58 (0.22)
Ι	-0.15 (0.58)	0.26 (0.56)	0.59 (0.44)	-0.48 (0.44)
(c)海溝性地震	夏 (式(30): M	w, X, D をパラ	メータ)
_	I種地盤	Ⅱ 種地盤	III 種地盤	工学的基盤
PGA	1.00 (0.31)	0.98 (0.32)	1.03 (0.30)	0.79 (0.24)
PGV	0.91 (0.25)	1.15 (0.25)	1.64(0.21)	0.69 (0.20)
SI	0.90 (0.25)	1.16 (0.25)	1.72 (0.20)	0.69 (0.20)
Ι	-0.08 (0.52)	0.12 (0.54)	0.36 (0.42)	-0.32 (0.42)
-	0.00 (0.02)	0.12 (0.51)	0.50 (0.12)	0.52 (0.12)

~2倍(横軸の-0.3~0.3程度)の範囲に収まっていることが分かる.仮に1つの地震の記録しか使用していない観測点のデータを除いた場合,地震内誤差の分布は対数正規分布でよく近似され,誤差は内陸地震と海溝性地震のPGVでそれぞれ0.131,0.157となるが,表-3の値と大きな違いはない.

なお, 例えば計測震度 *I* と最大速度 *PGV* の対数 にはおおよそ

$$I = 1.72 \log_{10} PGV + 2.68 \tag{40}$$

の関係がある⁵⁹⁾ことから,表-3で計測震度の回帰誤 差が他の指標の2倍程度となっていることは自然で ある.

(3) 地盤補正係数

回帰モデルごとに式(37),(38)で算出した地盤補正 係数を表-4に示す.工学的基盤の地盤補正係数は, どの指標に対しても他よりかなり小さい.最大加速 度PGAに対する地盤補正係数はあまり地盤種別によ

(d) 計測震度

図−9 短周期レベルをパラメータとしない距離減衰式 に基づく距離減衰曲線(工学的基盤,海溝性地 震の震源深さD=20[km])

る違いがないが、それ以外の指標についてはI種、II 種、III種の順に地盤補正係数は大きくなっていく傾 向があり、従来からの知見と整合する結果となって いる.

表-4の括弧内の数値は地盤補正係数の標準偏差, すなわち工学的基盤については式(37)の $10^{c_{Esd}}$ と式 (38)の c_{Esd} である.これらはかなり大きな数値とな っているが,既往の研究でも地盤補正係数のばらつ きは大きいことが指摘されている^{2),60)}.

(4) 推定される地震動強さと既往の研究との比較

短周期レベルをパラメータとしない場合の距離減 衰式(内陸地震は式(31),海溝性地震は式(30))を もとに,表-4の地盤補正係数により,工学的基盤に おける地震動強さに補正した距離減衰曲線を描いた ものが図-9である.海溝性地震の震源深さは20[km] としている.図から,内陸地震と海溝性地震では, 同じマグニチュードでも推定される地震動強さがか なり異なることが分かる.これは,海溝性地震には 短周期レベルが平均的に大きい日本海東縁の地震や スラブ内地震が含まれていることが一つの原因と考 えられる.また,海溝性地震の地震動強さは,震源 から遠ざかるに従って減衰する度合いが内陸地震よ りも大きいが,このような差異は,定数項で地震の タイプの違いを考慮する距離減衰式^{9,10)}では表現で きないものである.

図-10には、 M_w =7.0の場合について、短周期レベルをパラメータとした場合の距離減衰式に基づく、 工学的基盤における最大速度の距離減衰曲線を示す. 内陸地震は式(20)、プレート境界地震は式(26)、ス ラブ内地震は式(27)で計算される平均的な短周期レ ベル A_e を基準に、短周期レベルが 0.5 A_e , A_e , $2A_e$ の場合の距離減衰曲線を示している. 図では、短周 期レベルをパラメータとしない式(30)、式(31)の回 帰モデルを用いた場合とともに、司・翠川(1999)の 距離減衰式⁹と比較している. この距離減衰式は AVS30 = 600[m/s]のものであるため、式(41)⁹に AVS30 = 700[m/s]を代入して算出される地盤増幅率 R = 0.90を司・翠川(1999)の式に乗じたものとの比較 を行っている.

$\log R = 1.83 - 0.66 \log AVS30 \tag{41}$

この図によると、本研究で得られた距離減衰式は、 ほぼ司・翠川(1999)の式と調和的であるが、本研究 で海溝性地震について得られた最大速度の距離減衰 式の係数 b は0.004以上であり、司・翠川(1999)が採 用している0.002よりもかなり大きいため、遠距離

では本研究による推定値の方が小さくなる傾向があ る.これは、本研究では内陸地震と海溝性地震のデ ータを独立に扱ったため、タイプによる伝播経路の 平均的特性の違いが評価できていることを表したも のと考えられる. 短周期レベルが2倍になると,推定される最大速 度は1.5~1.8倍程度になっている.表-3の回帰係数 から,最大加速度については1.7~1.9倍程度になる ことが分かる.

同様に、距離減衰式で推定される加速度応答スペクトルを比較したものを図-11に示す.本研究で作成した加速度応答スペクトル(減衰定数5%)の回帰係数,回帰誤差および地盤補正係数は付録の表に示す.ここではTakahashi *et al.*(2004)の距離減衰式¹⁰⁾にsite class S1 (*AVS*30>600[m/s])の地盤補正を行って推定される加速度応答スペクトルと比較した.

Takahashi et al. (2004) では水平2成分の地震動それ ぞれに対する最大加速度応答値の幾何平均を対象と しており、本研究で対象としている応答波形を水平 面内で合成した最大値とは異なる.既往の研究では、 水平面合成の最大値をとった加速度応答スペクトル は、固有周期 0.05~5[s] の範囲で幾何平均の1.3倍程 度¹¹⁾ となることが報告されており、これを考慮すれ ば、両者の結果は調和的である.

また、図から、短周期レベルは加速度応答スペク トルの短周期成分に影響が大きいことがよく分かる. このため、特に固有周期が短い構造物や高次モード の振動に作用する地震力を精度良く予測するために は、地震の規模だけでなく、短周期レベルの評価が 重要となる.

6. 結 論

本研究では、震源深さ、地震のタイプ、地域によ る応力降下量の違いを直接的に考慮するために、ス ペクトルインバージョンにより短周期レベルを推定 し、それをパラメータとした最大加速度、最大速度、 SI値、計測震度及び加速度応答スペクトルの距離減 衰式を作成した.作成した距離減衰式はばらつきが 小さく、既往の距離減衰式ともよく一致しているこ とから、地震動強さの推定精度向上に資するものと 考えられる.

また,短周期レベルと地震モーメントとの関係を 整理し,その地域性を考察するとともに,地震のタ イプごとの関係式を提案した.短周期レベルの特性 には,東日本・西日本のように大きな地域区分では 明確な違いが見られなかったが,内陸地震について はより小さな地域区分での地域性が見られた.

距離減衰曲線や推定される加速度応答スペクトル からも,短周期レベルはマグニチュードと同様,地 震動強さに大きな影響を与えるパラメータであるこ

とが示された.今後は地域性,地震規模や震源深さ への依存性を詳細に検討することにより,将来発生 が予想される地震の短周期レベルを精度良く評価す ることが重要と考えられる. 謝辞:本研究では,関西地震観測研究協議会, (独)建築研究所,(財)電力中央研究所,東京電 力・他11社電力共通研究,(社)日本建築学会^{61,62}, (独)防災科学技術研究所(K-NET,KiK-net), 北海道開発局,横浜市(以上五十音順)並びに旧建 設省土木研究所と国土交通省国土技術政策総合研究 所が観測・収集した強震記録を使用した.記して謝 意を表する次第である.本研究の一部は,原子力委 員会の評価に基づき,文部科学省原子力試験研究費 により実施された.

付録

表-A1と表-A2にそれぞれ,内陸地震と海溝性地震を 対象とした加速度応答スペクトルの距離減衰式につ いて,固有周期ごとの回帰係数,回帰誤差および地 盤補正係数を示す.

表-A1	内陸地震を対象と	した加速度応答スペク	パトルの距離減衰式の回帰係数,	回帰誤差,	地盤補正係数

				(a)	式(29):	M_w, X, A	をバラメ	ータとし	た場合			
Т	a_1	a_2	b	\mathcal{C}_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	<i>e</i> _{TOTAL}	I種地盤	II 種地盤	III 種地盤	工学的基盤
0.1	0.072	0.797	0.00496	-11.35	0.0083	0.131	0.045	0.139	1.137	0.765	0.620	0.996
0.15	0.016	0.905	0.00475	-13.04	0.0091	0.137	0.043	0.143	1.090	0.889	0.665	0.907
0.2	-0.009	0.973	0.00428	-14.23	0.0097	0.137	0.038	0.143	1.030	1.035	0.748	0.842
0.25	0.026	0.935	0.00398	-13.80	0.0091	0.138	0.032	0.142	0.982	1.122	0.842	0.834
0.3	0.037	0.949	0.00349	-14.22	0.0088	0.137	0.027	0.140	0.940	1.220	0.920	0.904
0.4	0.086	0.888	0.00245	-13.58	0.0049	0.138	0.026	0.141	0.905	1.319	1.112	0.920
0.5	0.095	0.930	0.00229	-14.53	0.0045	0.142	0.045	0.149	0.904	1.327	1.511	0.908
0.6	0.103	0.951	0.00241	-15.03	0.0043	0.134	0.053	0.144	0.893	1.314	1.824	0.901
0.7	0.160	0.900	0.00226	-14.51	0.0045	0.135	0.060	0.147	0.901	1.301	2.073	0.932
0.8	0.264	0.779	0.00259	-12.89	0.0045	0.131	0.057	0.143	0.883	1.243	2.314	0.900
0.9	0.307	0.726	0.00268	-12.21	0.0040	0.131	0.060	0.144	0.896	1.239	2.416	0.888
1.0	0.393	0.638	0.00255	-11.14	0.0040	0.130	0.069	0.147	0.894	1.214	2.380	0.882
1.5	0.543	0.498	0.00271	-9.61	0.0053	0.117	0.079	0.141	0.875	1.260	1.925	0.835
2.0	0.646	0.354	0.00291	-7.67	0.0052	0.112	0.104	0.153	0.873	1.283	1.762	0.850
2.5	0.765	0.211	0.00249	-5.83	0.0041	0.105	0.116	0.157	0.876	1.301	1.712	0.789
3.0	0.883	0.087	0.00256	-4.29	0.0052	0.102	0.109	0.149	0.881	1.295	1.692	0.775
4.0	0.961	0.048	0.00234	-4.16	0.0119	0.100	0.086	0.132	0.896	1.264	1.600	0.805
5.0	0.944	0.240	0.00304	-7.59	0.0499	0.106	0.107	0.150	0.910	1.230	1.600	0.855
				(b) 式(31)	: <i>M</i> _w , X を	パラメー	ータとした	と場合			
Т	a_1		b	c_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	<i>e</i> _{TOTAL}	I種地盤	II 種地盤	III 種地盤	工学的基盤
<i>T</i> 0.1	<i>a</i> ₁ 0.578		<i>b</i> 0.00496	<i>c</i> ₀ 0.57	<i>d</i> 0.0083	<i>e</i> _{INTRA} 0.131	<i>e</i> _{INTER} 0.111	<i>e_{TOTAL}</i> 0.172	I種地盤 1.095	II 種地盤 0.810	III 種地盤 0.697	工学的基盤 0.810
<i>T</i> 0.1 0.15	<i>a</i> ₁ 0.578 0.591		<i>b</i> 0.00496 0.00475	<i>c</i> ₀ 0.57 0.50	<i>d</i> 0.0083 0.0091	<i>e_{INTRA}</i> 0.131 0.137	<i>e_{INTER}</i> 0.111 0.123	<i>e_{TOTAL}</i> 0.172 0.184	I種地盤 1.095 1.035	II 種地盤 0.810 0.939	III 種地盤 0.697 0.754	工学的基盤 0.810 0.712
<i>T</i> 0.1 0.15 0.2	<i>a</i> ₁ 0.578 0.591 0.609		<i>b</i> 0.00496 0.00475 0.00428	<i>c</i> ₀ 0.57 0.50 0.33	<i>d</i> 0.0083 0.0091 0.0097	<i>e_{INTRA}</i> 0.131 0.137 0.138	<i>e_{INTER}</i> 0.111 0.123 0.130	<i>e_{TOTAL}</i> 0.172 0.184 0.189	I種地盤 1.095 1.035 0.972	II 種地盤 0.810 0.939 1.096	III 種地盤 0.697 0.754 0.852	工学的基盤 0.810 0.712 0.645
<i>T</i> 0.1 0.15 0.2 0.25	a_1 0.578 0.591 0.609 0.621		<i>b</i> 0.00496 0.00475 0.00428 0.00398	$ \begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \end{array} $	<i>d</i> 0.0083 0.0091 0.0097 0.0091	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185	I種地盤 1.095 1.035 0.972 0.936	II 種地盤 0.810 0.939 1.096 1.194	III種地盤 0.697 0.754 0.852 0.964	工学的基盤 0.810 0.712 0.645 0.653
<i>T</i> 0.1 0.15 0.2 0.25 0.3	$ \begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \end{array} $		<i>b</i> 0.00496 0.00475 0.00428 0.00398 0.00349	$ \begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \end{array} $	<i>d</i> 0.0083 0.0091 0.0097 0.0091 0.0088	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138	<i>e</i> _{INTER} 0.111 0.123 0.130 0.124 0.124	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185	I種地盤 1.095 1.035 0.972 0.936 0.901	II 種地盤 0.810 0.939 1.096 1.194 1.307	III 種地盤 0.697 0.754 0.852 0.964 1.063	工学的基盤 0.810 0.712 0.645 0.653 0.709
T 0.1 0.15 0.2 0.25 0.3 0.4	$ \begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ \end{array} $		<i>b</i> 0.00496 0.00475 0.00428 0.00398 0.00349 0.00245	c0 0.57 0.50 0.33 0.19 -0.02 -0.30	<i>d</i> 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185 0.181	I種地盤 1.095 1.035 0.972 0.936 0.901 0.869	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731
<i>T</i> 0.1 0.2 0.25 0.3 0.4 0.5	$ \begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ \end{array} $		<i>b</i> 0.00496 0.00475 0.00428 0.00398 0.00349 0.00245 0.00229	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \end{array}$	<i>d</i> 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142	<i>e</i> _{<i>INTER</i>} 0.111 0.123 0.130 0.124 0.124 0.124 0.117 0.127	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185 0.181 0.190	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706
T 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6	$ \begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ \end{array} $		<i>b</i> 0.00496 0.00475 0.00428 0.00398 0.00349 0.00245 0.00229 0.00221	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \end{array}$	<i>d</i> 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043	<i>e</i> _{INTRA} 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124 0.117 0.127 0.133	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185 0.185 0.181 0.190 0.189	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \end{array}$	$ \begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ 0.732 \\ \end{array} $		<i>b</i> 0.00496 0.00475 0.00428 0.00398 0.00349 0.00245 0.00229 0.00241 0.00226	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045	<i>e</i> _{INTRA} 0.131 0.137 0.138 0.138 0.138 0.138 0.142 0.134 0.135	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124 0.127 0.127 0.133 0.130	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185 0.185 0.181 0.190 0.189 0.187	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \end{array}$	$\begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ 0.732 \\ 0.760 \end{array}$		<i>b</i> 0.00496 0.00475 0.00428 0.00398 0.00349 0.00245 0.00229 0.002241 0.00226 0.00259	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0045 0.0045 0.0045	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132	<i>e</i> _{<i>INTER</i>} 0.111 0.123 0.130 0.124 0.124 0.124 0.127 0.127 0.133 0.130 0.114	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185 0.185 0.181 0.190 0.189 0.187 0.174	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736
T 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9	$\begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ 0.732 \\ 0.760 \\ 0.760 \\ 0.769 \end{array}$		b 0.00496 0.00475 0.00428 0.00398 0.00245 0.00229 0.00221 0.00226 0.00259 0.00268	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124 0.127 0.127 0.133 0.130 0.114 0.110	<i>e</i> _{TOTAL} 0.172 0.184 0.189 0.185 0.185 0.185 0.181 0.190 0.189 0.187 0.174 0.172	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.851 0.853	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \end{array}$	$\begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ 0.732 \\ 0.760 \\ 0.769 \\ 0.799 \end{array}$		b 0.00496 0.00475 0.00428 0.00398 0.00349 0.00245 0.00229 0.00241 0.00259 0.00268 0.00255	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \\ -1.59 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132 0.132 0.130	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124 0.127 0.127 0.133 0.130 0.114 0.110 0.107	<i>e_{TOTAL}</i> 0.172 0.184 0.189 0.185 0.185 0.185 0.181 0.190 0.189 0.187 0.174 0.172 0.168	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.853 0.853 0.859	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284 1.258	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653 2.590	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726 0.726 0.742
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \end{array}$	$\begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ 0.732 \\ 0.760 \\ 0.769 \\ 0.799 \\ 0.859 \end{array}$		b 0.00496 0.00475 0.00428 0.00398 0.00245 0.00229 0.00241 0.00255 0.00255 0.00255 0.00271	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \\ -1.59 \\ -2.16 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0040 0.0040	<i>e</i> _{INTRA} 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132 0.132 0.130 0.118	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124 0.127 0.127 0.133 0.130 0.114 0.110 0.107 0.100	$\begin{array}{c} e_{TOTAL} \\ 0.172 \\ 0.184 \\ 0.189 \\ 0.185 \\ 0.185 \\ 0.185 \\ 0.181 \\ 0.190 \\ 0.189 \\ 0.187 \\ 0.174 \\ 0.172 \\ 0.168 \\ 0.155 \end{array}$	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.853 0.859 0.854	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284 1.258 1.303	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653 2.590 2.069	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726 0.742 0.732
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \\ 2.0 \end{array}$	$\begin{array}{c} a_1 \\ 0.578 \\ 0.591 \\ 0.609 \\ 0.621 \\ 0.640 \\ 0.650 \\ 0.686 \\ 0.708 \\ 0.732 \\ 0.708 \\ 0.732 \\ 0.760 \\ 0.769 \\ 0.799 \\ 0.859 \\ 0.871 \end{array}$		b 0.00496 0.00475 0.00428 0.00398 0.00245 0.00229 0.00221 0.00226 0.00259 0.00268 0.00255 0.00271 0.00291	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \\ -1.59 \\ -2.16 \\ -2.37 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132 0.132 0.130 0.118 0.112	<i>e</i> _{INTER} 0.111 0.123 0.130 0.124 0.124 0.127 0.127 0.133 0.130 0.114 0.110 0.107 0.100 0.113	$\begin{array}{c} e_{TOTAL} \\ 0.172 \\ 0.184 \\ 0.189 \\ 0.185 \\ 0.185 \\ 0.181 \\ 0.190 \\ 0.189 \\ 0.187 \\ 0.174 \\ 0.172 \\ 0.168 \\ 0.155 \\ 0.160 \end{array}$	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.853 0.859 0.854 0.856	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284 1.258 1.303 1.312	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653 2.590 2.069 1.852	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726 0.742 0.732 0.773
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \end{array}$	<i>a</i> ₁ 0.578 0.591 0.609 0.621 0.640 0.650 0.686 0.708 0.708 0.732 0.760 0.769 0.769 0.799 0.859 0.871 0.899		b 0.00496 0.00475 0.00428 0.00398 0.00245 0.00229 0.00241 0.00259 0.00268 0.00255 0.00271 0.00291 0.00249	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \\ -1.59 \\ -2.16 \\ -2.37 \\ -2.68 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0040 0.0052 0.0041	<i>e</i> _{INTRA} 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132 0.132 0.132 0.132 0.130 0.118 0.112 0.106	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.124 0.127 0.133 0.130 0.114 0.110 0.107 0.100 0.113 0.119	$\begin{array}{c} e_{TOTAL} \\ 0.172 \\ 0.184 \\ 0.189 \\ 0.185 \\ 0.185 \\ 0.185 \\ 0.181 \\ 0.190 \\ 0.189 \\ 0.187 \\ 0.174 \\ 0.172 \\ 0.168 \\ 0.155 \\ 0.160 \\ 0.159 \end{array}$	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.853 0.853 0.859 0.854 0.856 0.856	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284 1.258 1.303 1.312 1.318	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653 2.590 2.069 1.852 1.764	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726 0.736 0.726 0.742 0.732 0.773 0.746
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \end{array}$	<i>a</i> 1 0.578 0.591 0.609 0.621 0.640 0.650 0.686 0.708 0.732 0.760 0.769 0.769 0.769 0.799 0.859 0.871 0.899 0.938		b 0.00496 0.00475 0.00428 0.00398 0.00245 0.00229 0.00241 0.00256 0.00255 0.00271 0.00291 0.00249	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \\ -1.59 \\ -2.16 \\ -2.37 \\ -2.68 \\ -3.00 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0040 0.0053 0.0052 0.0041 0.0052	<i>e_{INTRA}</i> 0.131 0.137 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132 0.132 0.132 0.130 0.118 0.112 0.106 0.102	<i>e_{INTER}</i> 0.111 0.123 0.130 0.124 0.124 0.127 0.127 0.133 0.130 0.114 0.110 0.107 0.100 0.113 0.119 0.109	$\begin{array}{c} e_{TOTAL} \\ 0.172 \\ 0.184 \\ 0.189 \\ 0.185 \\ 0.185 \\ 0.185 \\ 0.181 \\ 0.190 \\ 0.189 \\ 0.187 \\ 0.174 \\ 0.172 \\ 0.168 \\ 0.155 \\ 0.160 \\ 0.159 \\ 0.150 \end{array}$	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.853 0.853 0.859 0.854 0.856 0.856 0.866 0.877	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284 1.258 1.303 1.312 1.318 1.302	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653 2.590 2.069 1.852 1.764 1.713	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726 0.736 0.726 0.742 0.732 0.773 0.746 0.757
$\begin{array}{c} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 4.0 \end{array}$	<i>a</i> 1 0.578 0.591 0.609 0.621 0.640 0.650 0.686 0.708 0.708 0.732 0.760 0.769 0.769 0.769 0.859 0.871 0.899 0.938 0.991		b 0.00496 0.00475 0.00475 0.00398 0.00245 0.00229 0.00241 0.00255 0.00255 0.00271 0.00249 0.00255 0.00256 0.00249 0.00249 0.00249	$\begin{array}{c} c_0 \\ 0.57 \\ 0.50 \\ 0.33 \\ 0.19 \\ -0.02 \\ -0.30 \\ -0.61 \\ -0.80 \\ -1.04 \\ -1.23 \\ -1.34 \\ -1.59 \\ -2.16 \\ -2.37 \\ -2.68 \\ -3.00 \\ -3.45 \end{array}$	d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0040 0.0053 0.0052 0.0041 0.0052 0.0119	<i>e</i> _{INTRA} 0.131 0.137 0.138 0.138 0.138 0.138 0.138 0.142 0.134 0.135 0.132 0.132 0.132 0.132 0.130 0.118 0.112 0.106 0.100	<i>e</i> _{INTER} 0.111 0.123 0.130 0.124 0.124 0.127 0.127 0.133 0.130 0.114 0.110 0.107 0.100 0.113 0.119 0.109 0.086	$\begin{array}{c} e_{TOTAL} \\ 0.172 \\ 0.184 \\ 0.189 \\ 0.185 \\ 0.185 \\ 0.185 \\ 0.181 \\ 0.190 \\ 0.189 \\ 0.187 \\ 0.174 \\ 0.172 \\ 0.168 \\ 0.155 \\ 0.160 \\ 0.159 \\ 0.150 \\ 0.132 \end{array}$	I 種地盤 1.095 1.035 0.972 0.936 0.901 0.869 0.855 0.847 0.849 0.851 0.853 0.859 0.854 0.856 0.856 0.866 0.877 0.895	II 種地盤 0.810 0.939 1.096 1.194 1.307 1.405 1.400 1.392 1.362 1.314 1.284 1.258 1.303 1.312 1.318 1.302 1.270	III 種地盤 0.697 0.754 0.852 0.964 1.063 1.270 1.713 2.085 2.328 2.601 2.653 2.590 2.069 1.852 1.764 1.713 1.612	工学的基盤 0.810 0.712 0.645 0.653 0.709 0.731 0.706 0.698 0.726 0.736 0.726 0.736 0.726 0.742 0.732 0.742 0.732 0.773 0.746 0.757 0.796

表-A2 海溝性地震を対象とした加速度応答スペクトルの距離減衰式の回帰係数,回帰誤差,地盤補正係数

				(a)	式(29): 1	A_w, X, A	トパラメ・	ータとし	た場合			
Т	a_1	a_2	b	\mathcal{C}_0	d	<i>e</i> _{INTRA}	<i>e</i> _{INTER}	<i>e</i> _{TOTAL}	I種地盤	Ⅱ種地盤	III 種地盤	工学的基盤
0.1	0.047	0.831	0.00616	-11.58	0.0083	0.143	0.156	0.212	1.055	0.917	0.974	0.926
0.15	0.092	0.793	0.00595	-11.09	0.0091	0.148	0.152	0.212	0.994	0.999	1.022	0.824
0.2	0.123	0.772	0.00565	-10.93	0.0097	0.150	0.142	0.206	0.937	1.171	1.178	0.776
0.25	0.163	0.733	0.00554	-10.47	0.0091	0.154	0.137	0.206	0.890	1.276	1.328	0.722
0.3	0.191	0.702	0.00529	-10.12	0.0088	0.153	0.131	0.201	0.857	1.392	1.364	0.704
0.4	0.189	0.673	0.00442	-9.77	0.0049	0.156	0.119	0.196	0.833	1.489	1.506	0.692
0.5	0.211	0.671	0.00402	-9.99	0.0045	0.157	0.117	0.196	0.813	1.500	1.933	0.666
0.6	0.251	0.607	0.00367	-9.14	0.0043	0.157	0.125	0.200	0.814	1.465	2.205	0.688
0.7	0.286	0.574	0.00350	-8.84	0.0045	0.153	0.127	0.199	0.812	1.435	2.473	0.669
0.8	0.305	0.563	0.00319	-8.85	0.0045	0.154	0.126	0.199	0.823	1.367	2.749	0.663
0.9	0.313	0.554	0.00305	-8.81	0.0040	0.156	0.123	0.198	0.827	1.342	2.829	0.658
1.0	0.334	0.527	0.00293	-8.47	0.0040	0.154	0.125	0.198	0.829	1.339	2.846	0.651
1.5	0.456	0.422	0.00274	-7.51	0.0053	0.147	0.146	0.207	0.853	1.285	2.381	0.729
2.0	0.533	0.345	0.00267	-6.74	0.0052	0.139	0.148	0.203	0.850	1.310	2.171	0.706
2.5	0.576	0.287	0.00224	-6.12	0.0041	0.134	0.151	0.202	0.848	1.307	2.050	0.779
3.0	0.613	0.272	0.00243	-6.19	0.0052	0.135	0.150	0.202	0.839	1.357	2.038	0.832
4.0	0.689	0.281	0.00279	-6.96	0.0119	0.131	0.146	0.196	0.840	1.403	2.030	0.830
5.0	0.834	0.296	0.00380	-8.04	0.0499	0.128	0.141	0.190	0.831	1.456	2.114	0.776
				(b)	式(30): 1	𝗛, 𝑋, 𝗁 𝔅	をパラメ	ータとし	た場合			
Т	a_1	a_2	b	(b) <i>c</i> ₀	式(30): M d	$M_w, X, D $ e_{INTRA}	をパラメ・ e _{INTER}	ータとし e _{TOTAL}	た場合 I種地盤	Ⅱ種地盤	Ⅲ 種地盤	工学的基盤
<i>T</i>	<i>a</i> ₁ 0.529	a_2 0.00778	<i>b</i> 0.00616	(b) <i>c</i> ₀ 0.91	式(30): M d 0.0083	$\frac{A_w, X, D}{e_{INTRA}}$	をパラメ・ <i>e_{INTER}</i> 0.182	ータとし <i>e_{TOTAL}</i> 0.231	た場合 I種地盤 1.113	II 種地盤 0.780	III種地盤 0.763	工学的基盤 0.932
<i>T</i> 0.1 0.15	<i>a</i> ₁ 0.529 0.552	<i>a</i> ₂ 0.00778 0.00727	<i>b</i> 0.00616 0.00595	(b) <i>c</i> ₀ 0.91 0.83	式(30): <i>M</i> <i>d</i> 0.0083 0.0091	$A_w, X, D \in e_{INTRA}$ 0.143 0.148	をパラメ・ <i>e_{INTER}</i> 0.182 0.177	ータとし <u>e_{TOTAL}</u> 0.231 0.230	た場合 I種地盤 1.113 1.060	II 種地盤 0.780 0.868	III種地盤 0.763 0.822	工学的基盤 0.932 0.842
<i>T</i> 0.1 0.15 0.2	<i>a</i> ₁ 0.529 0.552 0.572	<i>a</i> ₂ 0.00778 0.00727 0.00687	<i>b</i> 0.00616 0.00595 0.00565	(b) <u>c</u> ₀ 0.91 0.83 0.69	式(30): <i>M</i> <i>d</i> 0.0083 0.0091 0.0097	$A_w, X, D = e_{INTRA}$ 0.143 0.148 0.150	をパラメ、 <i>e_{INTER}</i> 0.182 0.177 0.168	ータとし <u>e_{TOTAL}</u> 0.231 0.230 0.226	た場合 I種地盤 1.113 1.060 0.990	II 種地盤 0.780 0.868 1.012	III 種地盤 0.763 0.822 0.946	工学的基盤 0.932 0.842 0.786
<i>T</i> 0.1 0.15 0.2 0.25	<i>a</i> ₁ 0.529 0.552 0.572 0.589	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641	<i>b</i> 0.00616 0.00595 0.00565 0.00554	(b) c ₀ 0.91 0.83 0.69 0.57	式(30): M d 0.0083 0.0091 0.0097 0.0091	$ \begin{array}{r} A_{w}, X, D & e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \end{array} $	をパラメ・ <i>e_{INTER}</i> 0.182 0.177 0.168 0.162	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224	た場合 I種地盤 1.113 1.060 0.990 0.943	II 種地盤 0.780 0.868 1.012 1.119	III 種地盤 0.763 0.822 0.946 1.087	工学的基盤 0.932 0.842 0.786 0.738
<i>T</i> 0.1 0.15 0.2 0.25 0.3	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620	<i>b</i> 0.00616 0.00595 0.00565 0.00554 0.00529	(b) <i>c</i> ₀ 0.91 0.83 0.69 0.57 0.45	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088	$ \begin{array}{r} A_{w}, X, D & \overline{c} \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ \end{array} $	Eパラメ <u>e_{INTER}</u> 0.182 0.177 0.168 0.162 0.155	ータとし <u>e_{TOTAL}</u> 0.231 0.230 0.226 0.224 0.218	た場合 <u>1種地盤</u> 1.113 1.060 0.990 0.943 0.907	II 種地盤 0.780 0.868 1.012 1.119 1.228	III 種地盤 0.763 0.822 0.946 1.087 1.127	工学的基盤 0.932 0.842 0.786 0.738 0.719
<i>T</i> 0.1 0.15 0.2 0.25 0.3 0.4	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594	<i>b</i> 0.00616 0.00595 0.00565 0.00554 0.00529 0.00442	(b) <i>c</i> ₀ 0.91 0.83 0.69 0.57 0.45 0.37	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049	$ \begin{array}{c} M_{w}, X, D \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ \end{array} $	をパラメ、 <i>e_{INTER}</i> 0.182 0.177 0.168 0.162 0.155 0.143	ータとし <u>erotal</u> 0.231 0.230 0.226 0.224 0.218 0.212	た場合 <u>1種地盤</u> <u>1.113</u> <u>1.060</u> 0.990 0.943 0.907 0.875	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702
<i>T</i> 0.1 0.15 0.2 0.25 0.3 0.4 0.5	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00549	<i>b</i> 0.00616 0.00595 0.00555 0.00554 0.00529 0.00442 0.00402	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13	式(30): M d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045	$ \begin{array}{c} A_w, X, D & \overline{a} \\ \hline e_{INTRA} \\ 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.158 \\ \end{array} $	をパラメ、 <i>e_{INTER}</i> 0.182 0.177 0.168 0.162 0.155 0.143 0.144	ータとし <u>e_{TOTAL}</u> 0.231 0.230 0.226 0.224 0.218 0.212 0.214	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677
<i>T</i> 0.1 0.2 0.25 0.3 0.4 0.5 0.6	<i>a</i> 1 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00549 0.00549	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00442 0.00402 0.00402	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043	$ \begin{array}{c} A_{w}, X, D \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.158 \\ 0.157 \\ \end{array} $	をパラメ、 <i>e_{INTER}</i> 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146	ータとし <u>e_{TOTAL}</u> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214	た場合 <u>1種地盤</u> 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.851	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697
<i>T</i> 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00549 0.00549 0.00507 0.00473	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00442 0.00442 0.00402 0.00367 0.00350	(b) <i>c</i> ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043 0.0045	$ \begin{array}{c} A_{w}, X, D \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.158 \\ 0.157 \\ 0.153 \\ \end{array} $	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146	ータとし <u>e_{TOTAL}</u> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.211	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.855 0.851 0.848	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679
<i>T</i> 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00549 0.00507 0.00473 0.00447	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00422 0.00442 0.00367 0.00350 0.00319	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043 0.0045 0.0045	$A_{w}, X, D \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.158 \\ 0.157 \\ 0.153 \\ 0.154 \\ \hline e_{INTRA} \\ \hline e_{INTTRA} \\ \hline e_{INT$	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.211 0.211	た場合 <u>1種地盤</u> <u>1.113</u> <u>1.060</u> 0.990 0.943 0.907 0.875 0.855 0.851 0.848 0.858	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.672
<i>T</i> 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00549 0.00507 0.00473 0.00447 0.00444	<i>b</i> 0.00616 0.00595 0.00554 0.00529 0.00442 0.00442 0.00402 0.00367 0.00350 0.00319 0.00305	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0045 0.0045 0.0045 0.0045	$A_{w}, X, D \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.158 \\ 0.157 \\ 0.153 \\ 0.154 \\ 0.156 \\ \hline ext{added} \\ 0.$	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145 0.141	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.211 0.211 0.211	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.855 0.851 0.848 0.858 0.858 0.862	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.672 0.668
$ \begin{array}{r} T \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \end{array} $	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635 0.640	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00549 0.00549 0.00549 0.00547 0.00447 0.00444 0.00434	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00442 0.00402 0.00367 0.00350 0.00319 0.00305 0.00293	(b) <i>c</i> ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44 -0.53	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045	$ \begin{array}{c} A_{w}, X, D \\ \hline e_{INTRA} \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.153 \\ 0.157 \\ 0.153 \\ 0.154 \\ 0.156 \\ 0.154 \\ 0.156 \\ 0.154 \\ \end{array} $	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145 0.141 0.141	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.211 0.211 0.211 0.209	た場合 <u>1種地盤</u> 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.851 0.848 0.858 0.858 0.852 0.862 0.862	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211 1.214	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431 2.460	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.672 0.668 0.660
$\begin{array}{c} T \\ \hline 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \end{array}$	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635 0.640 0.701	<i>a</i> ₂ 0.00778 0.00687 0.00641 0.00620 0.00594 0.00549 0.00507 0.00473 0.00447 0.00444 0.00434	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00442 0.00442 0.00367 0.00350 0.00319 0.00305 0.00293 0.00274	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44 -0.53 -1.19	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0049 0.0045 0.0043 0.0045 0.0045 0.0045 0.0045 0.0040 0.0040 0.0053	$A_{w}, X, D \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.156 \\ 0.158 \\ 0.157 \\ 0.153 \\ 0.154 \\ 0.156 \\ 0.154 \\ 0.156 \\ 0.154 \\ 0.147 \\ \hline ext{answer: 1} \\ 0.147 \\ \hline ext{answer: 1} \\ \hline ext$	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145 0.141 0.141 0.151	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.211 0.211 0.211 0.211 0.211 0.211	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.851 0.848 0.858 0.862 0.862 0.862 0.880	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211 1.214 1.190	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431 2.460 2.106	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.672 0.668 0.660 0.733
$\begin{array}{c} T\\ \hline 0.1\\ 0.15\\ 0.2\\ 0.25\\ 0.3\\ 0.4\\ 0.5\\ 0.6\\ 0.7\\ 0.8\\ 0.9\\ 1.0\\ 1.5\\ 2.0\\ \end{array}$	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635 0.640 0.701 0.733	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00594 0.00594 0.00507 0.00473 0.00447 0.00444 0.00434 0.00434 0.00437	<i>b</i> 0.00616 0.00595 0.00554 0.00529 0.00422 0.00422 0.00367 0.00350 0.00319 0.00305 0.00293 0.00274 0.00267	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44 -0.53 -1.19 -1.60	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043 0.0045 0.0045 0.0045 0.0045 0.0040 0.0053 0.0052	$A_{w}, X, D = \frac{e_{INTRA}}{0.143}$ 0.143 0.148 0.150 0.154 0.153 0.156 0.158 0.157 0.153 0.154 0.156 0.154 0.156 0.154 0.154 0.147 0.140	Eパラメ、 <i>e_{INTER}</i> 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145 0.141 0.141 0.151 0.149	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.211 0.211 0.209 0.211 0.209	た場合 <u>1種地盤</u> <u>1.113</u> 1.060 0.990 0.943 0.907 0.875 0.855 0.851 0.848 0.858 0.858 0.862 0.862 0.880 0.872	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211 1.214 1.190 1.230	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431 2.460 2.106 1.954	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.679 0.672 0.668 0.660 0.733 0.708
$\begin{array}{c} T \\ \hline 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \end{array}$	<i>a</i> ₁ 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635 0.640 0.701 0.733 0.742	<i>a</i> ₂ 0.00778 0.00727 0.00687 0.00641 0.00620 0.00594 0.00594 0.00507 0.00473 0.00447 0.00444 0.00434 0.00437 0.00424 0.00431	<i>b</i> 0.00616 0.00595 0.00554 0.00529 0.00442 0.00442 0.00367 0.00350 0.00319 0.00305 0.00293 0.00274 0.00267 0.00224	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44 -0.53 -1.19 -1.60 -1.89	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0040 0.0053 0.0052 0.0041	$\begin{array}{c} \mathcal{A}_{w}, X, D < \\ \hline e_{INTRA} \\ \hline 0.143 \\ 0.148 \\ 0.150 \\ 0.154 \\ 0.153 \\ 0.154 \\ 0.155 \\ 0.158 \\ 0.157 \\ 0.153 \\ 0.154 \\ 0.154 \\ 0.154 \\ 0.154 \\ 0.154 \\ 0.147 \\ 0.140 \\ 0.134 \end{array}$	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.145 0.141 0.141 0.141 0.151 0.149 0.148	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.211 0.211 0.211 0.211 0.209 0.211 0.204 0.200	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.855 0.851 0.848 0.858 0.862 0.862 0.862 0.880 0.872 0.868	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211 1.214 1.190 1.230 1.244	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431 2.460 2.106 1.954 1.874	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.679 0.672 0.668 0.660 0.733 0.708 0.780
$\begin{array}{c} T\\ \hline 0.1\\ 0.15\\ 0.2\\ 0.25\\ 0.3\\ 0.4\\ 0.5\\ 0.6\\ 0.7\\ 0.8\\ 0.9\\ 1.0\\ 1.5\\ 2.0\\ 2.5\\ 3.0\\ \end{array}$	<i>a</i> 1 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635 0.640 0.701 0.733 0.742 0.771	<i>a</i> ² 0.00778 0.00627 0.00687 0.00641 0.00594 0.00594 0.00594 0.00507 0.00473 0.00447 0.00444 0.00437 0.00424 0.00431 0.00406	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00442 0.00442 0.00367 0.00367 0.00305 0.00293 0.00274 0.00224 0.00224 0.00243	(b) <i>c</i> ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44 -0.53 -1.19 -1.60 -1.89 -2.17	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043 0.0045 0.0045 0.0045 0.0040 0.0040 0.0052 0.0041 0.0052	$A_{w}, X, D \in \frac{e_{INTRA}}{0.143}$ 0.143 0.148 0.150 0.154 0.153 0.156 0.158 0.157 0.153 0.154 0.156 0.154 0.156 0.154 0.156 0.154 0.147 0.140 0.134 0.136	Eパラメ、 e _{INTER} 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145 0.141 0.141 0.141 0.141 0.141 0.148 0.148	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.211 0.211 0.211 0.211 0.209 0.211 0.204 0.200 0.201	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.855 0.851 0.848 0.862 0.862 0.862 0.862 0.862 0.868 0.872	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211 1.214 1.190 1.230 1.244 1.293	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431 2.460 2.106 1.954 1.874 1.874 1.869	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.677 0.677 0.679 0.672 0.668 0.660 0.733 0.708 0.780 0.832
$\begin{array}{c} T\\ \hline 0.1\\ 0.15\\ 0.2\\ 0.25\\ 0.3\\ 0.4\\ 0.5\\ 0.6\\ 0.7\\ 0.8\\ 0.9\\ 1.0\\ 1.5\\ 2.0\\ 2.5\\ 3.0\\ 4.0\\ \end{array}$	<i>a</i> 1 0.529 0.552 0.572 0.589 0.599 0.580 0.601 0.604 0.620 0.633 0.635 0.640 0.701 0.733 0.742 0.771 0.851	<i>a</i> ² 0.00778 0.00727 0.00687 0.00641 0.00509 0.00594 0.00507 0.00473 0.00447 0.00444 0.00434 0.00434 0.00431 0.00406 0.00427	<i>b</i> 0.00616 0.00595 0.00554 0.00554 0.00529 0.00442 0.00442 0.00367 0.00350 0.00319 0.00305 0.00293 0.00274 0.00224 0.00224 0.00224 0.00223	(b) c ₀ 0.91 0.83 0.69 0.57 0.45 0.37 0.13 0.01 -0.18 -0.35 -0.44 -0.53 -1.19 -1.60 -1.89 -2.17 -2.81	式(30): A d 0.0083 0.0091 0.0097 0.0091 0.0088 0.0049 0.0045 0.0043 0.0045 0.0045 0.0045 0.0045 0.0040 0.0052 0.0041 0.0052 0.00119	$A_{w}, X, D \in \frac{e_{INTRA}}{0.143}$ 0.143 0.148 0.150 0.154 0.153 0.156 0.158 0.157 0.153 0.154 0.156 0.154 0.156 0.154 0.154 0.147 0.140 0.134 0.136 0.131	Eパラメ、 <i>e_{INTER}</i> 0.182 0.177 0.168 0.162 0.155 0.143 0.144 0.146 0.146 0.145 0.141 0.141 0.141 0.141 0.141 0.144 0.148 0.148 0.143	ータとし <i>e_{TOTAL}</i> 0.231 0.230 0.226 0.224 0.218 0.212 0.214 0.214 0.214 0.211 0.211 0.211 0.211 0.211 0.209 0.211 0.200 0.201 0.194	た場合 1種地盤 1.113 1.060 0.990 0.943 0.907 0.875 0.855 0.855 0.851 0.848 0.862 0.862 0.862 0.862 0.862 0.862 0.857 0.858	II 種地盤 0.780 0.868 1.012 1.119 1.228 1.313 1.326 1.308 1.290 1.230 1.211 1.214 1.190 1.230 1.244 1.293 1.336	III 種地盤 0.763 0.822 0.946 1.087 1.127 1.246 1.607 1.863 2.111 2.354 2.431 2.460 2.106 1.954 1.874 1.874 1.869 1.854	工学的基盤 0.932 0.842 0.786 0.738 0.719 0.702 0.677 0.697 0.679 0.679 0.672 0.668 0.660 0.733 0.708 0.780 0.832 0.829

参考文献

- 川島一彦,相沢興,高橋和之:最大地震動及び地震応 答スペクトルの距離減衰式,土木研究所報告第166号, 1985.
- Fukushima, Y. and Tanaka, T.: A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan, *Bull. Seism. Soc. Am.*, Vol. 80, pp. 757-783, 1990.
- 3) 釜江克宏,入倉孝次郎,福知保長:地震のスケーリン

グ則に基づいた大地震時の強震動予測,日本建築学会 構造系論文報告集, Vol. 430, pp. 1-9, 1991.

- Kamae, K., Irikura, K. and Pitarka, A.: A technique for simulating strong ground motion using hybrid Green's function, *Bull. Seism. Soc. Am.*, Vol. 88, pp. 357-367, 1998.
- 5) 中央防災会議東海地震に関する専門調査会(第10回) 資料, 2001.
- 6) 地震調査研究推進本部地震調査委員会:糸魚川-静岡 構造線断層帯(北部,中部)の地震を想定した強震動

評価, 2002.

- 7) 片岡正次郎,日下部毅明,村越潤,田村敬一:想定地 震に基づくレベル2地震動の設定手法に関する研究, 国土技術政策総合研究所研究報告,No. 15, 2003.
- 8) 安中正,山崎文雄,片平冬樹:気象庁87型強震計記 録を用いた最大地動及び応答スペクトル推定式の提案, 第24回地震工学研究発表会講演論文集,Vol. 1, pp. 161-164, 1997.
- 9) 司宏俊,翠川三郎:断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式,日本建築学会構造系論文集,Vol. 523, pp. 63-70, 1999.
- 10) Takahashi, T., Asano, A., Saiki, T., Okada, H., Irikura, K., Zhao, J. X., Zhang, J., Thio, H. K., Somerville, P. G., Fukushima, Y. and Fukushima, Y.: Attenuation models for response spectra derived from Japanese strong-motion records accounting for tectonic source types, *13th World Conf. Earthq. Eng.*, Paper No. 1271, 2004.
- 11) 佐藤智美,片岡正次郎,奥村俊彦:K-Net 強震記録に 基づく工学的基盤における加速度応答スペクトルと経 時特性の推定式の検討,第11回日本地震工学シンポジ ウム論文集,pp.615-620,2002.
- 加藤研一,武村雅之,八代和彦:強震記録から評価した短周期震源スペクトルの地域性,地震2,Vol. 51, pp. 123-138,1998.
- 13) 佐藤智美, 巽誉樹:全国の強震記録に基づく内陸地震 と海溝性地震の震源・伝播・サイト特性,日本建築学 会構造系論文集, Vol. 556, pp. 15-24, 2002.
- 14) 武村雅之,稗圃成人,池浦友則,植竹富一:プレートの沈み込み帯における中小規模地震の震源スペクトルの地域性,地震2, Vol. 42, pp. 349-359, 1989.
- 15) 佐藤智美: 中小地震の応力降下量の断層タイプ・震 源深さ依存性及び地域性に関する研究, 土木学会地震 工学論文集, Vol. 27, 論文番号48, 2003.
- 16) 片岡正次郎,日下部毅明:応力降下量をパラメータと した加速度応答スペクトルの距離減衰式,土木学会地 震工学論文集, Vol. 27, 論文番号51, 2003.
- 17) 壇一男,渡辺基史,佐藤俊明,石井透:断層非一様すべり破壊モデルから算定される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデル化,日本建築学会構造系論文集,Vol. 545, pp. 51-62,2001.
- 入倉孝次郎:強震動予測レシピー大地震による強震動の予測手法-,京都大学防災研究所年報,Vol. 47A, pp. 25-45, 2004.
- 19) 福島美光,田中貞二:新しいデータベースを用いた最 大加速度の距離減衰式の改訂,日本地震学会講演予稿 集, No. 2, p. 116, 1992.

- 20) 宇津徳治: 地震学 第2版, 共立出版, 1984.
- 中村亮一,植竹富一:強震記録データによる東北地方の三次元減衰構造,地震2, Vol. 56, pp. 447-455, 2004.
- 22) 佐藤智美:強震記録に基づく2003年宮城県沖の地震の 大加速度の成因に関する研究,日本建築学会構造系論 文集, Vol. 581, pp. 31-38, 2004.
- 23) 森川信之,神野達夫,成田章,藤原広行,福島美光: 東北日本の異常震域に対応するための距離減衰式の補 正係数,日本地震工学会論文集,Vol. 3, pp. 14-26, 2003.
- 24) Seno, T., Shimazaki, K., Somerville, P., Sudo, K. and Eguchi, T.: Rupture process of the Miyagi-Oki, Japan, earthquake of June 12, 1978, *Phys. Earth Planet Inter.*, Vol. 23, pp. 39-61, 1980.
- 25) 末次大輔,中西一郎:1982年浦河沖地震の断層モデルの再検討,日本地震学会講演予稿集,No.2, p. 83, 1986.
- 26) 菊地正幸,須藤研:1982年7月23日茨城県沖地震の震 源過程-海山沈没とAsperity,月刊地球,No.7, pp. 72-78,1985.
- 27) Sato, R.: Rupture characteristics of the 1983 Nihonkai-Chubu (Japan Sea) earthquake as inferred from strong motion accelerograms, *J. Phys. Earth*, Vol. 33, pp. 525-557, 1985.
- 28) 阿部邦明:小津波の波源モデルと津波の性質-日本海 中部地震の最大余震(1983年6月21日)に伴う津波-,地 震2, Vol. 40, pp. 349-363, 1987.
- 29) 岡田義光・笠原敬司:1987年12月千葉県東方沖地震, 日本地震学会講演予稿集, No.1, p. 63, 1988.
- 30) Fukuyama, E. and Mikumo, T.: Dynamic rupture analysis: Inversion for source process of the 1990 Izu-Oshima, Japan, earthquake (M=6.5), *J. Geophys. Res.*, Vol. 98, No.B4, pp. 6529-6542, 1993.
- 31) 中西一郎, 森谷武男, 笠原稔: 1993年釧路沖地震によ る被害の調査研究, pp. 11-18, 1993.
- 32) Mendoza, C. and Fukuyama, E.: The July 12, 1993, Hokkaido-Nansei-Oki, Japan, earthquake: Coseismic slip pattern from strong-motion and teleseismic recordings, *J. Geophys. Res.*, Vol. 101, No. B1, pp. 791-801, 1996.
- 33) 菊地正幸,金森博雄:広帯域地震記録による1994年北 海道東方沖地震の震源メカニズム,月刊地球, Vol. 17, No. 5, pp. 322-328, 1995.
- 34) Nakamura, W. and Takeo, M.: Slip history of the 1994 Sanriku-Haruka-Oki, Japan, earthquake deduced from strong-motion data, *Bull. Seism. Soc. Am.*, Vol. 87, pp. 918-931, 1997.
- 35) Sekiguchi, H., Irikura, K. and Iwata, T.: Source inversion for estimating the continuous slip distribution on a faultintroduction of Green's functions convolved with a correction function to give moving dislocation effects in

subfaults, Geophys. J. Int., Vol. 150, pp. 377-391, 2002.

- 36) 岩田知孝,関口春子:2000年鳥取県西部地震の震源過程と震源域強震動,第11回日本地震工学シンポジウム 論文集,pp. 125-128, 2002.
- 37) 関口春子,岩田知孝:2001年芸予地震の破壊過程と強 震動,月刊地球,号外No.38, pp. 239-246, 2002.
- 38) 青井真,関口春子,功刀卓,本多亮,藤原広行:近地 強震動記録による宮城県沖の地震(2003/05/26, 18:24)の 震源インバージョン,http://www.k-net.bosai.go.jp/knet/news/miyagi/, 2003.
- 39) 青井真,関口春子,功刀卓,本多亮,藤原広行:近地 強震動記録による宮城県北部(2003/07/26,7:13)の地震 の震源インバージョン(暫定),http://www.k-net.bosai. go.jp/k-net/news/miyagi 200307260713/,2003.
- 40) Koketsu, K., Hikima, K., Miyazaki, S. and Ide, S.: Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake, *Earth, Planets and Space*, Vol. 56, pp. 329-334, 2004.
- 41) 日本道路協会:道路橋示方書・同解説V耐震設計編, 丸善,2002.
- 42) 岩田知孝, 入倉孝次郎:観測された地震波から震源特性・伝播経路特性, 及び観測点近傍の地盤特性を分離 する試み, 地震2, Vol. 39, pp.579-593, 1986.
- 43) Hisada, T. and Ando, H.: Relation between duration of earthquake ground motion and the magnitude, *Kajima Institute of Construction Technology Report*, pp. 1-4, 1976.
- 44) 壇一男, 宮腰淳一, 八代和彦:中小規模地震の観測記録 から得られる地盤増幅特性に基づく大規模地震の応答 スペクトルの簡易評価法, 日本建築学会構造系論文集, Vol. 480, pp. 35-46, 1996.
- 45) Aki, K. and Richards, P. G.: *Quantitative seismology*, Vol. I, W. H. Freeman and Company, New York, 1980.
- 46) Somerville, P. G. and Helmberger, D. V.: The effect of crustal structure on the attenuation of strong ground motion in eastern north America, *Proc. of Fourth U. S. National Conf. on Earthq.Eng.*, Vol. 1, pp. 385-394, 1990.
- 47) Boore, D. M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, *Bull. Seism. Soc. Am.*, Vol. 73, pp. 1865-1894, 1983.
- 48) Boore, D. M. and Boatwright, J.: Average body-wave radiation coefficient, *Bull. Seism. Soc. Am.*, Vol. 74, pp. 1615-1621, 1984.

- 49) Fletcher, R.: FORTRAN subroutines for minimization by quasi-Newton methods, Report R7125 AERE, Harwell, England, 1972.
- 50) 佐藤智美,川瀬博,佐藤俊明:表層地盤の影響を取り 除いた工学的基盤波の統計的スペクトル特性,日本建 築学会構造系論文集, Vol. 462, pp. 79-89, 1994.
- 51) 佐藤良輔編著:日本の地震断層パラメター・ハンドブ ック, 鹿島出版会, 1989.
- 52) Brune, J. N.: Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., Vol. 75, pp. 4997-5009, 1970.
- 53) Brune, J. N.: Correction, J. Geophys. Res., Vol. 76, p. 5002, 1971.
- 54) 片岡正次郎,日下部毅明:内陸地震の規模・タイプと 地表地震断層の特性との関係,土木学会論文集,No. 801/I-73, pp. 21-32, 2005.
- 55) 国土地理院:地震予知連絡会会報,第55巻~第68巻, 1996~2002.
- 56) 佐藤俊明, 宮腰淳一, 佐藤智美, 渡辺孝英, 植竹富一, 田中英朗: 気象庁87型電磁式強震計記録の応答スペク トルの統計解析による各地気象台のやや長周期帯域 (周期1~10秒)の揺れやすさ係数について, 第9回日本 地震工学シンポジウム論文集, pp.607-612, 1994.
- 57) 翠川三郎, 大竹雄: 地震動強さの距離減衰式にみられ るバラツキに関する基礎的分析, 日本地震工学会論文 集, Vol. 3, pp. 59-70, 2003.
- 58) Youngs, R. R., Abrahamson, N., Mkdisi, F. I. and Sadigh, K.: Magnitude dependence variance of peak ground acceleration, *Bull. Seism. Soc. Am.*, Vol. 85, pp. 1161-1176, 1995.
- 59) 翠川三郎,藤本一雄,村松郁栄:計測震度と旧気象庁 震度および地震動強さの指標との関係,地域安全学会 論文集, Vol. 1, pp. 51-56, 1999.
- 60) Tamura, K., Matsumoto, S. and Nakao, Y.: Attenuation relations of peak ground acceleration and acceleration response spectra for engineering applications, *Research Report of PWRI*, Vol. 199, pp. 79-95, 2003.
- 61) Architectural Institute of Japan: Digitized strong-motion earthquake records in Japan, Vol. 1: The off east coast of Chiba prefecture earthquake, December 17, 1987, 1992.
- 62) 日本建築学会:1995年兵庫県南部地震強震記録資料集, 1996.

(2005.8.8 受付)

ATTENUATION RELATIONSHIPS OF GROUND MOTION INTENSITY USING SHORT PERIOD LEVEL AS A VARIABLE

Shojiro KATAOKA, Toshimi SATOH, Shunsuke MATSUMOTO and Takaaki KUSAKABE

Attenuation relationships are proposed for PGA, PGV, spectrum intensity (SI), instrumental seismic intensity, and acceleration response spectrum of ground motion at the Class I, II, and III ground and engineering bedrock using about 11,000 strong motion records observed in Japan. The attenuation relationships include short period level of acceleration source spectrum as one of variables besides moment magnitude and source distance. After taking the short period level of each earthquake into consideration, errors of the regression analyses become remarkably smaller than those without short period level. Dependence on magnitude and regional difference of short period level are also discussed.