ひずみ集中帯内外で発生した地殻内地震系列間の震源特性の比較 COMPARISONS OF SOURCE CHARACTERISTICS OF EVENTS IN THE HIGH STRAIN RATE ZONE AND OTHERS

染井一寬¹⁾、浅野公之²⁾、岩田知孝³⁾

Kazuhiro SOMEI¹, Kimiyuki ASANO², Tomotaka IWATA³

財団法人 地域 地盤 環境 研究所、修士(理学)
 ¹Geo-Research Institute, M. Sc.
 e-mail: somei@geor.or.jp
 2) 京都大学防災研究所、助教 博士(理学)
 ²Assistant Professor, Disaster Prevention Research Institute, Kyoto University, Dr. Sc.
 e-mail: k-asano@egmdpri01.dpri.kyoto-u.ac.jp
 3) 京都大学防災研究所、教授 理博
 ³Professor, Disaster Prevention Research Institute, Kyoto University, Dr. Sc.
 e-mail: iwata@egmdpri01.dpri.kyoto-u.ac.jp

ABSTRACT: We estimated stress drops of 291 events (M_w : 3.1-6.9) in nine inland crustal earthquake sequences in Japan to compare the source characteristics among the sequences inside and outside of the high strain rate zone. The stress drop is computed by the corner frequency f_c estimated from the observed source spectral ratio using S-coda assuming the ω^{-2} source spectral model. There is no obvious difference between stress drop of events in the high strain rate zone and that of others.

キーワード: ひずみ集中帯、地殻内地震系列、応力降下量、S波コーダ、スペクトル比

1. はじめに

信頼性の高い予測強震動を作成するためには震源モデル、特に応力降下量の設定が重要である。例え ば震源断層モデルに基づく強震動予測手法において広く使われている入倉レシピ¹¹では、特性化震源モ デルの考えを導入し、そのパラメータを既往の不均質震源断層モデルを分析したスケーリング則^{2,3}に 基づいて与えている。上記のパラメータは内陸地殻内地震の平均像として与えられているが、震源特性 の地域性や断層タイプ別の特性の違いがあるとするならば、それらを想定震源モデルに組み込むことに より、予測強震動の高精度化につながる。例えば、佐藤⁴⁰は、日本の11個の大規模地殻内地震(*M*_w: 5.7-6.9) と、その周辺で発生した中規模地殻内地震(*M*_w: 3.9-5.5)について、スペクトルインバージョン法を適用し、 いずれの規模の地震も逆断層型の方が、横ずれ断層型よりも短周期レベルや、応力降下量が大きい傾向 があることを示している。また、Kagawa *et al.⁵¹* や Asano and Iwata⁶⁰ は、不均質震源モデルのアスペリ ティの応力降下量の深さ依存性を指摘している。

本研究は、日本各地で起きている M6-M7 クラスの地殻内地震の本震、余震の地震系列の震源スケー リングおよび応力降下量を推定し、地震系列間の比較を行って震源特性(応力降下量)の相違点を調べる。 その際に地震発生環境のひとつとして、「ひずみ集中帯」^{7),8)}の内外で発生した地震という点に着 目した比較を行う。

2. データ

対象とした地震系列は、染井・他⁹によっ て解析された8地震系列に、1996年宮城県 北部の地震(1996宮城北部)を加えた9地震 系列、291の地震(Mw: 3.1-6.9)である。 図1 に、各地震系列の本震震央位置と F-net¹⁰⁾に よる震源メカニズム解(1996 宮城北部は気 象庁の CMT 解)、また、測地学⁷⁾、地質学 ⁸⁾の両見地から推定されるひずみ集中帯の およその分布を斜線で示す。ここで、ひず み集中帯で発生した地震と分類したものは、 1996 宮城北部、2004 中越、2004 留萌、2007 能登、2007 中越沖、2008 岩手宮城で、それ 以外の地域で発生した地震は、1997 鹿児島、 2000 鳥取、2005 福岡である。表1に、これ らの地震系列の震源情報¹¹⁾⁻¹⁵⁾、地震数、地 震規模範囲を示す。データは1997 鹿児島と 2007 能登は K-NET¹⁶⁾の強震記録を、その他 の地震ではKiK-net¹⁷⁾の地中の強震記録を用 いそれぞれ1点-4点の観測点の記録を扱 う。

図1 解析した9地震系列の本震震央位置と本震の震 源メカニズム解。斜線部は、ひずみ集中帯のおよそ の分布を表す。メカニズム解について、黒色がひず み集中帯内、灰色がひずみ集中帯外で発生した地震 と分類する。

3. 解析手法

3.1 震源スペクトル比の抽出と応力降下 量の推定

観測された地震波のうち、直達 S 波以降の部分は、S 波コーダと呼ばれ、散乱波によって構成されると考えられている。ある地域の地震記録に着目すると、震源時からの経過時間が直達 S 波の 2 倍以降の S 波コーダ部分では、各周波数帯の波形振幅は震源距離に依存せず、共通の曲線(コモンシェープ)

Name of Earthquake	Origin Time (JST); Mainshock (yyyy/mm/dd,hh:mm)	Hypocenter Information	Number of Events	$M_{\rm w}$ Range
In the High Strain Zone				
1996 Miyagi-Hokubu	1996/08/11,03:12	JMA	5	4.3-6.1*1
2004 Chuetsu	2004/10/23,17:56	11)	65	3.1-6.6
2004 Rumoi	2004/12/14,14:56	JMA	3	3.7-5.7
2007 Noto	2007/03/25,09:41	12)	35	3.4-6.7
2007 Chuetsu-oki	2007/07/16,10:13	JMA	14	3.5-6.6
2008 Iwate-Miyagi	2008/06/14,08:43	JMA*2	71	3.5-6.9
In the Others				
1997 Kagoshima	1997/03/26,17:31	JMA	20	3.6-6.1
2000 Tottori	2000/10/06,13:30	13)	39	3.2-6.6
2005 Fukuoka	2005/03/20,10:53	14)	39	3.3-6.6

表1 解析した地震系列の震源情報、地震数、地震規模範囲。

*¹ JMA magnitude $(M_{\rm JMA})$ *² Hypocenter information for the mainshock is from NIED¹⁵).

に従って減衰するという特徴を持っていることが知られている^{18),19)}。Mayeda and Walter²⁰⁾は、この特 徴を用いて、S 波コーダに対する震源、時間減衰、サイトの特性に関する観測方程式を提案し、大小の 地震の観測スペクトル比から震源スペクトルを求めた。本研究も Mayeda and Walter²⁰⁾に倣った解析を 行う。なお、染井・他⁹⁾では、2008 岩手宮城の地震記録について、コモンシェープの特徴を持つこと を確認している。

図2に、2008 岩手宮城の本震(*M*_w6.9)と余震(*M*_w4.0)の地震ペアに対する27 観測点でのスペクトル比の例を示す。これを見ると、S 波部分の観測スペクトル比は有限断層の破壊伝播の影響や震源輻射特性が含まれることにより、震源スペクトル形状に、観測点ごとのばらつきが大きいが、一方で、S 波コーダのそれはばらつきが小さいことがわかる。つまり、S 波コーダを用いた場合は、観測震源スペクトル比が観測点選択に依りにくいことがわかる。

得られた観測震源スペクトル比に対して Brune²¹⁾の ω^2 震源スペクトルモデルに基づく震源スペクトル比関数(SSRF)をフィットさせることにより、大地震と小地震のコーナー周波数 f_c を推定した(図 2 赤 色線)²²⁾。なお、解析周波数帯域は、S/N>2.0 を考慮した最低周波数から 10.0Hz までとした。ここで、地震モーメント M_0 は、F-net による値¹⁰⁾(1996 宮城北部は気象庁の CMT 解による値)に固定した。得られた f_c から Brune²¹⁾の式(1)を用いて、震源断層を円形クラックと仮定した断層半径 rを求めた。

$$f_c = 0.37 \frac{\beta}{r} \tag{1}$$

)

ここで、破壊速度は 0.9 β を仮定する。 β は震源での S 波速度であり、Matsubara *et al.*²³⁾による値を用いた。さらに、Eshelby²⁴⁾の式(2)により、 $r \ge M_0$ から応力降下量 $\Delta \sigma$ を

$$\Delta \sigma = \frac{7}{16} \left(\frac{M_0}{r^3} \right) \tag{2}$$

と推定した。

このようにして得られた全291の地震のコーナー周波数fcと地震モーメントMoの関係を図3に示す。

図 2 2008 岩手宮城の本震(M_w6.9)と余震(M_w4.0)の地震ペアに対するスペクトル比の例(左から S 波 部分、S 波コーダ部分)。灰色線は各観測点の比、黒色線はそれらの対数平均(観測震源スペクトル 比)、赤色線は理論震源スペクトル比関数(SSRF)である。また、黒色線の実線部分は、フィッテ ィングに使用した周波数帯域、三角印は得られたコーナー周波数である。右の地図は、使用した地 震の震央位置とメカニズム解、ここで使用した 27 の KiK-net 観測点の分布を表す。

図 3 地震モーメント M_0 とコーナー周波数 f_c との関係。破線は、応力降下量一定 $(M_0 \propto f_c^{-3})$ を表す。

応力降下量は、0.01 から 100MPa の範囲で 求まった。また、ばらつきは地震系列ごと に、その範囲が異なり、震源の性質を表し ていると考えられる。また、大局的には、 応力降下量の地震規模依存性は見られない。

3.2 求められたコーナー周波数の検討

本研究で用いたデータにおいては、小地 震記録の低周波数側の SN 比の問題から、 低周波数のコーナー周波数が外挿によって 求められている。ここでは、このように解 析範囲外に求められた f_cの妥当性について 検討した。

求められた fcから、(1)式を用いて、クラ ック半径、さらにクラックの面積(クラッ クサイズ)を推定することができる。一方、 本震のような規模の大きな地震については 強震波形を用いた震源インバージョン解析 が行われ、不均質すべりモデル²⁵⁾⁻³⁴⁾が求め られている。また、Somerville et al.²⁾の規範 により、不均質すべりモデルから破壊総面 積とアスペリティ総面積が抽出されている ^{6,33),35)}。これらの面積と、本研究で求めら れた fcから推定されたクラックサイズの比 較を図4に示す。Mw6.6-6.9の規模の大き い地震では、2007中越沖を除いて、クラッ クサイズは破壊総面積との対応が良いよう

図4 f_c より求められるクラックサイズ(O)と不均 質すべりモデルから Somerville *et al.*²⁾の規範によって 抽出された破壊総面積(口)、アスペリティ総面積(\Rightarrow) との比較。実線、破線は破壊総面積、アスペリティ総 面積のスケーリング式²⁾を表す。 に見える。*M*_w6.6-6.9 の地震の中では 2007 中越沖は、クラックサイズが破壊総面積よりアスペリティ 総面積に近い。これは、震源近傍で 3 つのパルスが観測されるなど、複雑な震源過程であった³⁰⁾⁻³³⁾ ことを反映しているのかもしれない。いずれにしても、求められたクラックサイズは、破壊総面積や アスペリティ総面積と対応しており、得られた *f*_cは妥当な値であると言える。SSRF の低周波数側のフ ラットレベルを広帯域の記録を用いて決定される F-net の地震モーメント量から得られる比で固定し ていることにより、大地震のコーナー周波数がほぼ妥当に求められているのかもしれない。

4. ひずみ集中帯内外での応力降下量の地域性

図5は、各地震系列の本震の応力降下量、系 列の平均応力降下量、さらに系列中の最大応力 降下量(この3つの応力降下量をまとめて、以 後「指標応力降下量」と呼ぶ)を比較したもの である。指標応力降下量は、各地震系列で、よ く似た傾向が見られる。1996 宮城北部や 1997 鹿児島は大きく、2000 鳥取や 2004 留萌は小さ い。また、それ以外の地震系列はその中間の傾 向を示している。

図1において分類したひずみ集中帯で発生した地震(黒色)と、それ以外の地域で発生した地 震(灰色)とで比較すると、指標応力降下量に系統的な違いは見られない。1996宮城北部と2008 岩手宮城は、本研究ではひずみ集中帯内で発生した地震としており、発生した空間的位置も互いに近いが、指標応力降下量は大きく異なる。 ひずみ集中帯内外といった違いより、各地震系列の地震発生環境が、応力降下量の大小に影響を与えている可能性がある。Mw6.6-6.9の本震の応力降下量は、1.2MPaから11MPaにばらついていた。

図 5 各地震系列の最大応力降下量(▲)、本震の 応力降下量(★)、全地震の応力降下量の対数平均 (■)。

5. 本震の短周期レベルと断層タイプの関係

佐藤⁴⁾は、スペクトルインバージョン法に基づき、大規模地殻内地震の短周期レベル A を推定し、 断層タイプ別の短周期レベルを比較した。その結果、平均スケーリング則³⁾に比して、逆断層型の A が 1.45 倍、横ずれ断層型のそれが 0.64 倍という違いがあることを示した。ここでは、本研究で求めら れた f_cから得られる A について、断層タイプ別の比較を行う。

Aは、f_cとM₀を用いて、(3)式から算出する。

$$A = 4\pi^2 f_c^2 M_0$$
 (3)

図 6 は得られた $A \ge M_0$ の関係を示した図で、図 6(a)は本研究で推定した f_c から得られた結果、図 6(b) は、本研究の手法(スペクトル比法)の条件について、解析周波数帯域、フィッティングにおける周波数 軸上の重み付け、使用する地震モーメント量、観測点(佐藤⁴⁾の基準観測点を使用)を、佐藤⁴⁾の条件と 同等とした場合の結果である。壇・他³⁾のスケーリング式を基準に見ると、図 6(a)は、断層タイプによ る Aの違いは、確認できない。図 6(b)は、逆断層型の地震の方が、横ずれ断層型の地震よりも Aが大 きいようにも見えるが、佐藤⁴⁾で示されるほどの明瞭な違いは無い。解析手法による、短周期レベルの 評価の偏りに注意する必要があると考えられる。

6. まとめ

近年日本で発生した9つの地殻内地震系列の291 地震について、S波コーダを用いたスペクトル比法 によって、強震観測記録から震源スペクトル比を抽出し、コーナー周波数f。、応力降下量を推定した。 応力降下量は、2-3桁のオーダーで、地震系列ごとに異なる範囲に求まり、本研究で解析した地震 系列において、応力降下量の地震規模依存性は、大局的には 見られなかった。本震の応力降下量に注目すると、M_w6.6-6.9 の地震は、1.2 から 11MPa 程度の幅があった。各地震系 列の平均応力降下量、最大応力降下量、本震の応力降下量に ついて、ひずみ集中帯内外における系統的な違いは見られず、 「ひずみ集中帯」内外という差よりは、各々の地震系列の地 震発生環境が応力降下量の大小を決めている可能性がある。 本研究で対象とした本震は、ひずみ集中帯は逆断層型のみ、 それ以外は横ずれ断層型のみである。ひずみ集中帯内外とい う発生環境の影響と、断層タイプの違いの影響を区別するた めには、ひずみ集中帯内で発生した横ずれ断層型の地震であ る 1995 年兵庫県南部地震などを解析する必要がある。

断層タイプ別に短周期レベルAを比較すると、本研究での 解析条件から得られた結果は、明瞭な違いは見られなかった。 佐藤⁴⁾と同等の条件で解析した結果、逆断層型の地震の方が 横ずれ断層型の地震よりAが大きいようにも見えるが、佐藤 ⁴⁾で示されるほどの明瞭な違いは見られなかった。本研究で は、S波コーダを用いたスペクトル比法によって、観測点ご とのスペクトル比のばらつきは小さく、つまり、観測点選択 に依らず、安定にfcが求められていると考えている。解析手 法の違いによるモデルパラメータ推定値の違いについて、比 較検討が必要である。

謝辞

本研究の解析に際しては、独立行政法人防災科学技術研究 所の強震観測網 K-NET、KiK-net の強震波形記録、広帯域 地震観測網 F-net によるモーメントテンソル解、気象庁一元 化震源カタログ、CMT 解をそれぞれ使用させて頂きました。 これらのデータの維持、管理に携わられている関係者、関係 機関の方々の不断の努力に、深く感謝申し上げます。

東京大学地震研究所の加藤愛太郎博士には、再決定震源デ ータ^{11),12)}を提供して頂きました。また、清水建設株式会社 の佐藤智美博士には、大変有益なご助言を頂きました。以上、 記して感謝いたします。図の作成には Generic Mapping Tools Ver.4.3.1³⁶⁾を使用いたしました。

参考文献

1) Irikura, K. and H. Miyake : Recipe for predicting strong ground motion from crustal earthquake scenarios, Pure Appl. Geophys., 2010, doi:10.1007/s00024-010-0150-9.

2) Somerville, P.G., K. Irikura, R. Graves, S. Sawada, D. Wald, N.

Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada : Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seims. Res. Lett., Vol.70, 1999, pp.59-80.

3) 壇一男、渡辺基史、佐藤俊明、石井透:断層の非一様すべり破壊モデルから算定される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデル化、日本建築学会構造系論文集、No.545、2001年、pp.51-62.

4) 佐藤智美: 逆断層と横ずれ断層の違いを考慮した日本の地殻内地震の短周期レベルのスケーリング 則、日本建築学会構造系論文報告集、No.651、2010年、pp.923-932.

5) Kagawa, T., K. Irikura, and P. G. Somerville : Differences in ground motion and fault rupture process between the surface and buried rupture earthquakes, Earth Planets Space, Vol.56, No.1, 2004, pp.3-14.

6) Asano, K. and T. Iwata : Characterization of Stress Drops on Asperities Estimated from the Heterogeneous Kinematic Slip Model for Strong Motion Prediction for Inland Crustal Earthquakes in Japan, Pure Appl. Geophys., 2010, doi: 10.1007/s00024-010-0116-y.

7) Sagiya, T., S. Miyazaki, and T. Tada : Continuous GPS array and present-day crsutral deformation of Japan, Pure. Appl. Geophys., Vol.157, 2000, pp.2302-2232.

8) 岡村行信:新第三紀以降の歪み集中帯、日本海東縁の活断層と地震テクトニクス(大竹政和・平朝彦・ 大田陽子編)、2002年、pp.111-121.

9) 染井一寛、浅野公之、岩田知孝:地震波コーダのスペクトル比から推定したひずみ集中帯内外の地 震系列の応力降下量、月刊地球、Vol.32、No.7、2010年、pp.440-447.

10) 福山英一、石田瑞穂、D. S. Dreger、川井啓廉: オンライン広帯域地震データを用いた完全自動メ カニズム決定、地震2、Vol.51、1998年、pp.149-156.

11) Kato, A., S. Sakai, N. Hirata, E. Kurashimo, T. Iidaka, T. Iwasaki, and T. Kanazawa : Imaging the seismic structure and stress field in the source region of the 2004 mid-Niigata Prefecture earthquake: Structural zones of weakness and seismogenic stress concentration by ductile flow, J. Geophys. Res., Vol.111, No.8, 2006, B08308, doi:10.1029/2005JB004016.

12) Kato, A., S. Sakai, T. Iidaka, T. Iwasaki, E. Kurashimo, T. Igarashi, N. Hirata, T. Kanazawa, and Group for the aftershock observations of the 2007 Noto Hanto Earthquake : Three-dimensional velocity structure in the source region of the Noto Hanto Earthquake in 2007 imaged by a dense seismic observation, Earth Planets Space, Vol.60, 2008, pp.105-110.

13) Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo : Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence, Bull. Seism. Soc. Am., Vol.93, 2003, pp.1468-1478.

14) Uehira, K., T. Yamada, M. Shinohara, K. Nakahigashi, H. Miyamachi, Y. Iio, T. Okada, H. Takahashi, N. Matsuwo, K. Uchida, T. Kanazawa, and H. Shimizu : Precise aftershock distribution of the 2005West Off Fukuoka Prefecture Earthquake (Mj=7.0) using a dense onshore and offshore seismic network, Earth Planets Space, Vol.58, 2006, pp.1605-1610.

15) 独立行政法人防災科学技術研究所:平成20年岩手宮城内陸地震、http://www.hinet.bosai.go.jp/topics/ iwate-miyagi080614/、2009年.

16) Kinoshita, S.: Kyoshin Net (K-NET), Seism. Res. Lett. Vol.69, 1998, pp.309-332.

17) Aoi, S., K. Obara, S. Hori, K. Kasahara, and Y. Okada : New strong motion observation network: KiK-net, Eos Trans. AGU, Vol.81, 2000, F863.

18) Aki, K. and B. Chouet : Origin of coda waves: Source, attenuation, and scattering effects, J. Geophys. Res., Vol.80, 1975, pp.3322-3342.

19) Rautian, T.G. and V.I. Khalturin : The use of the coda for determination of the earthquake source spectrum, Bull. Seism. Soc. Am., Vol.68, 1978, pp.923-948.

20) Mayeda, K. and W.R. Walter : Moment, energy, stress drop, and source spectra of western U.S. earthquakes, J. Geophys. Res., Vol.101, 1996, pp.11,195-11,208.

21) Brune, J. N. : Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., Vol.75, 1970, pp.4997-5009.

22) 三宅弘恵、岩田知孝、入倉孝次郎:経験的グリーン関数法を用いた 1997 年 3 月 26 日(*M*_{JMA}6.5)及 び 5 月 13 日(*M*_{JMA}6.3)鹿児島県北西部の地震の強震動シミュレーションと震源モデル、地震 2、Vol.51、 1999 年、pp.431–445.

23) Matsubara, M., K. Obara, and K. Kasahara : Three-dimensional P-and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography, Tectonophysics, Vol.454, 2008, pp.86-103, doi:10.1016/j.tecto.2008.04.016.

24) Eshelby, J. : The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A, Vol.241, 1957, pp.376-396.

25) Miyakoshi, K., T. Kagawa, H. Sekiguchi, T. Iwata and K. Irikura : Source characterization of island earthquakes in Japan using source inversion results, Proc. 12th World Conf. Earthq. Eng., 2000, paper no.1850.

26) 岩田知孝、関口春子: 2000 年鳥取県西部地震の震源過程と震源域強震動、第11 回日本地震工学シンポジウム論文集、2002年、pp.125-128.

27) Asano, K. and T. Iwata : Source rupture process of the 2004 Chuetsu, Mid-Niigata Prefecture, Japan, earthquake inferred from waveform inversion with dense strong-motion data, Bull. Seism. Soc. Am., Vol.99, 2009, pp.123-140.

28) Asano, K. and T. Iwata : Source process and near-source ground motions of the 2005 West Off Fukuoka Prefecture earthquake, Earth Planets Space, Vol.58, 2006, pp.93-98.

29) 岩田知孝、浅野公之、栗山雅之、岩城麻子: 2007年能登半島地震の震源モデルと強震動、平成19 年度京都大学防災研究所年報、Vol.51A、2008年、pp.121-127.

30) 引間和人、纐纈一起:波形記録と測地データを用いた2007年新潟県中越沖地震の震源過程解、日本 地球惑星科学連合2008 年大会予稿集、2008年、\$146-015. 31) Aoi, S., H. Sekiguchi, N. Morikawa, and T. Kunugi : Source process of the 2007 Niigata-ken Chuetsu-oki earthquake derived from near-fault strong motion data, Earth Planets Space, Vol.60, 2008, pp.1131-1135

32) 堀川晴央: The 2007 Chuetsu-oki, Japan, Earthquake: Rupture over a Complicated Fault System、日本地 球惑星科学連合2008 年大会予稿集、2008年、S142-P002.

33) 宮腰研、倉橋奨、入倉孝次郎:2007年新潟県中越沖地震の震源モデルに関するレビュー、2008 年 日本地震学会秋季大会予稿集、2008年、C11-01.

34) 浅野公之、岩田知孝: 強震波形による2008年岩手・宮城内陸地震の震源破壊過程、平成20 年度京都大学防災研究所研究発表講演会予稿集、2009年、A18.

35) 宮腰研: 不均質震源の特性化、月刊地球号外、Vol.37、2002年、pp.56-61.

36) Wessel, P., and W. H. F. Smith : New, improved version of Generic Mapping Tools released, Eos Trans. AGU, Vol.79, 1998, pp.579.