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Most models of volcanic ash flows assume that the flow is either dilute or dense, with
dynamics dominated by fluid turbulence or particle collisions, respectively. However, most
naturally occurring flows feature both of these end members. To this end, a two-layer
model for the formation of dense pyroclastic basal flows from dilute, collapsing volcanic
eruption columns is presented. Depth-averaged, constant temperature, continuum
conservation equations to describe the collapsing dilute current are derived. A dense
basal flow is then considered to form at the base of this current owing to sedimentation
of particles and is modelled as a granular avalanche of constant density. We present results
which show that the two-layer model can predict much larger maximum runouts than
would be expected from single-layer models, based on either dilute or dense conditions,
as the dilute surge can outrun the dense granular flow, or vice versa, depending on
conditions.
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1. Introduction

Pyroclastic currents are highly hazardous flows that consist of a suspension of
particles in hot gas travelling at speeds up to hundreds of metres per second. They
are commonly observed to have two main components (figure 1); a dense basal
part, herein called the ‘pyroclastic flow’ with volumetric particle concentrations of
tens of per cent, overlain by a dilute turbulent component, called the ‘pyroclastic
surge’ with concentrations of the order of 1 per cent (Sparks et al. 1973;
Druitt 1998).

Pyroclastic currents are frequently produced by the collapse of an eruption
column (Sparks & Wilson 1976; Wilson 1976) that initially produces a dilute
current from which the dense basal flow develops by mass transfer (Druitt &
Sparks 1982). Exchange of mass and heat between the two layers allows for a
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Figure 1. Schematic of the coupled pyroclastic flow model. Adapted from Doyle et al. (2008). (a)
A typical eruption-column collapse is represented by the release from rest of a constant volume of
height H0 and width x0, generating a dilute ‘pyroclastic surge’ of height H , propagating along a
slope inclined at q to the horizontal, with x parallel to the slope and z perpendicular. Sedimentation
from the pyroclastic surge forms a dense basal ‘pyroclastic flow’ of height h. (b) There are three
interfaces, between the dilute current and the surrounding ambient gas (z = f (x , t)), between
the dilute (surge) and dense (flow) parts of the current (z = c(x , t)) and the local topography
imposed on the slope (z = b(x , t)). (c) Particulate volume concentration (f) profiles for these flows;
dashed lines illustrate expected particulate volume concentration and solid lines our two-layer
model idealization.

spectrum of flows, being dominated by either the dense or dilute part (Fisher
1979; Druitt 1998). For example, in the 1997 explosions of Soufriére Hills Volcano,
Montserrat, columns collapsed from heights of 400–750 m and generated dilute
pyroclastic currents. These rapidly decelerated as particles sedimented into the
basal regions, resulting in dense basal flows emerging from beneath at tens of
metres per second (Druitt et al. 2002).

Most models of pyroclastic density currents consider either a dilute turbulent
suspension (e.g. Dartevelle et al. 2004; Neri et al. 2007) or a dense pyroclastic
flow (e.g. Druitt 1998; Kelfoun et al. 2009). The dilute models take either a
multi-phase approach (e.g. Neri et al. 2007) or consider a ‘bulk-continuum’
pseudo-fluid mixture (e.g. Denlinger 1987). The simplest models use a depth-
averaged assumption, similar to the classic ‘shallow-water’ equations, by assuming
the horizontal extent of the current greatly exceeds its vertical height (e.g.
Bursik & Woods 1996). The suspending turbulent current is considered well
mixed with no fluid phase loss, and the concentration decreases owing to particles
settling through a basal viscous sub-layer (Martin & Nokes 1989).

Dense pyroclastic flows have been modelled as Bingham fluids with a constant
fluid viscosity and yield strength (e.g. Sparks 1976), as a non-deforming, frictional
sliding block (e.g. Hayashi & Self 1992; Druitt 1998), as a rapid granular flow
via discrete element simulations (e.g. Staron & Hinch 2005) or as a pseudo-
fluid (e.g. Huppert & Dade 1998; Mangeney-Castelnau et al. 2003). In the
latter, simplifications come from depth-averaging, and by treating the material
as a constant density, incompressible, deformable Coulomb continuum with a
stress-free surface.
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These single-layer models do not capture the dynamics of many volcanic ash
flows, which feature both dilute and concentrated regions within which turbulent
suspension mechanics and granular interactions are important. Dartevelle et al.
(2004) and Dufek & Bergantz (2007) have demonstrated that multi-phase models
need to consider the whole spectrum of possible granular concentrations, to
simulate mass exchanges between the dense and dilute regions of pyroclastic
currents. Denlinger (1987) and Takahashi & Tsujimoto (2000) have developed
models for the formation of upper dilute clouds from dense block-and-ash
flows, and Wadge et al. (1998) and Widiwijayanti et al. (2009) have introduced
extensions to map ash-cloud surge impacts beyond the dense basal flow.
Two-layer models have been developed to model turbidity currents in the
ocean (e.g. Drago 2002), and powder snow-dense flow avalanches (e.g. Eglit
1998; Issler 1998; Zwinger et al. 2003). These latter models consider the
generation of an upper dilute powder-snow avalanche from the top of a
basal dense snow flow avalanche through processes of re-suspension within
a small interface layer, incorporating shear between the layers, elutriation
and entrainment.

Here, we expand upon the study of Doyle et al. (2008) and present additional
developments of the two-layer model for the formation of these dense basal flows
from the upper dilute column collapse currents, including an analysis of the
steady-flow problem. Observations of column collapse currents (e.g. Nairn &
Self 1978; Cole et al. 1998; Druitt et al. 2002) and deposit interpretations
(e.g. Sparks et al. 1973; Fisher 1979) indicate that a distinct interface exists
between these dense and dilute layers. The bulk depositional flow unit, which is
composed of light pumice and dense lithic clasts, is commonly overlain by fine,
well-sorted and cross-bedded deposits from the upper turbulent cloud. Surface-
wave-derived features on pumice flow deposit surfaces further illustrate that
a sharp density contrast must exist between the layers (E. S. Calder 2009,
personal communication).

The model presented herein has been specifically designed to elucidate the
principles that govern the formation of these dense basal flows from the overlying
dilute layer. There is assumed to be a distinct interface between the two layers,
thus permitting their independent motion, and we develop separate models for
their dynamics. We present the full derivation of this model in §2, and the
numerical method in §3. Example calculations are presented in §4, and the
steady-flow situation is examined in §5. In §6, we discuss the importance of
adopting this model idealization to capture the maximum potential runout of
these hazardous flows.

2. Development of the two-layer model

The two-layer model is depicted in figure 1. Within the dilute layer (c < z < f ),
the volume fraction of particles, f, is small but varying temporally and spatially
and the particles sediment relative to the suspending, turbulent air. In contrast,
within the dense layer (b < z < c), the volume fraction of particles is high and
is assumed to be constant (f = fb); the relatively heavy particles are supported
by the particle collisions and both phases have the same velocity. Therefore, the
layers exhibit different balances of forces and hence dominant dynamics. However,
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for both layers, we retain the shallow-flow assumption and therefore negligible
accelerations normal to the base, and the velocity is predominantly parallel to
the underlying boundary.

Calculations and observations suggest that pyroclastic material cools by a
maximum of 350 K in the very proximal region of a collapsing eruption column
(Sparks et al. 1978), owing to a combination of air entrainment, degassing
of juvenile clasts and incorporation of cold lithics (Calder et al. 2000). The
temperature along the pyroclastic flow path is found to be generally constant
(Calder et al. 2000) as the solid particles have a high thermal energy and large
heat capacity, and so the hot pyroclastic current can heat and expand entrained
air with little cooling of the flow (see discussions in Kieffer 1981; Valentine 1987;
Ishimine 2005).

We thus model the dilute layer as a turbulent suspension of particles with
a constant average temperature of 850 K based upon a vent temperature of
1100 K (Sparks et al. 1978, 1997). It will be further assumed to be incompressible
(Huppert & Dade 1998). In our model idealization, we do not consider
entrainment of the surrounding gas during the subsequent motion of the current.
This has the potential to alter the density difference between the flowing current
and the surrounding ambient. However, Hallworth et al. (1996) show that the
buoyancy of the current is conserved under this mixing owing to a balance
between reducing density difference and increasing flow height (i.e. thickness).
The entrained ambient fluid must be accelerated up to the velocity of the current,
and this exerts an effective drag on the motion. We neglect such effects in
this investigation.

The density of the solid and interstitial gas phases are denoted by rs and rg,
respectively, while the ambient is of density ra. Thus, the bulk density of the
current is given by b = rsf + rg(1 − f). It is important to note that even in
the dilute layer, while the particle concentration may be very dilute (f ≤ 0.01),
the high density of the particles (up to 2400 kg m−3) significantly enhances the
bulk density and thus unlike many previous studies of dilute, particle-driven flows,
these flows are non-Boussinesq. Models for Boussinesq flows commonly impose
a finite height at the flow front, often described by a Froude condition (e.g.
Huppert & Simpson 1980). However, this is not appropriate for non-Boussinesq
models and so, in the manner of Ancey et al. (2007), we impose a negligible front
height (§3c).

The key feature of the dilute layer is the potential for the relatively heavy
particles to settle under gravity through the interstitial gas. On the assumption
that the inertia of the individual particles is sufficiently small, the velocities of
the solid and gas phases, denoted by vs and vg, respectively, are given by vs =
vg − u cos qẑ + u sin qx̂, where x̂ and ẑ are unit vectors aligned with the coordinate
axes, tan q is the gradient of the underlying boundary and the settling speed
u = |uuu| may be determined from the expression (Sparks et al. 1997)

u =
(

4(rs − rg)gd
3Cdrg

)1/2

. (2.1)

Here, d represents particle diameter and Cd is a drag coefficient, which is assumed
close to unity (Woods & Bursik 1991). In what follows, we assume that the
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density-induced component of the gas flow far exceeds the component of the
settling velocity downslope (vg · x̂ � u sin q), and so u sin qx̂ will be neglected
from the expression for the solid phase velocity above.

The flow in the dilute layer is turbulent, which suspends the relatively heavy
particles. Thus, the governing equations model the properties of the flow averaged
over fluctuations. This process introduces turbulent fluxes that are non-vanishing
and contribute both to the effective shear stress generated by the flow and to
the suspension of particles. When the flow is sufficiently dilute (f � 1), and the
velocity and solids concentration perturbations within the flow are incorporated
via Reynolds averaging, the equations that express mass conservation of each
phase are given by

V. vg = 0 and
vf

vt
+ V. (fvs) = V. (KVf), (2.2)

where K denotes the turbulence-induced sediment diffusivity (Dyer & Soulsby
1988). The equation of motion for the mixture is given by

rg(1 − f)
(

vvg

vt
+ vg. Vvg

)
+ rsf

(
vvs

vt
+ vs. Vvs

)
= −VP + bg + V.ttt, (2.3)

where g denotes gravitational acceleration, P the fluid pressure and ttt the shear
stress generated by the dilute mixture, for which the stresses generated by direct
interactions of particles are neglected.

Turning to the dense basal layer, which is generated by the accumulation of
particles sedimenting from the base of this dilute current, we assume a well-
defined interface with the upper dilute current, as inferred from observational
evidence of flows and deposits (§1). The key dynamical feature of the basal
layer is that particle collisions generate significant stresses that may no longer
be neglected. In particular, the flow generates sufficient normal stress to support
the weight of the flowing material, and thus it is assumed that the volume fraction
of particulate remains constant and that the gaseous and solid phase flow at the
same velocity (vs = vg ≡ vb). In the same manner as the dilute layer, all effects
of heat transfer are neglected and the motion is assumed to be incompressible.
Mass conservation and momentum balance are given by

V. vb = 0 and
vbbvb

vt
+ V. (bbvb ⊗ vb) = V.sss + bbg, (2.4)

where bb = rg(1 − fb) + rsfb and sss denotes the stresses generated by the
interactions between particles, and the fluid-generated stress is ignored.

We must now define suitable boundary conditions. At the upper surface of
the dilute current (z = f (x , t), figure 1), it is assumed that, in the absence of
entrainment, the interface is advected with the interstitial gas velocity and that
there is no flux of particles across it. This implies that

vf
vt

+ ug
vf
vx

= wg and n̂1. (uuuf + KVf) = 0 at z = f (x , t), (2.5)

where n̂1 is a unit normal to the interface and the velocity fields have components
vg = (ug, wg) and vs = (us, ws). Additionally, as will be discussed below, we impose
a continuous pressure field and vanishing shear stress at this interface. The
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boundary underlying the dense basal current is rigid and impermeable to the
flow, and additionally we do not allow mass transfer between the flow and the
underlying bed (i.e. there is assumed to be no erosion or deposition). Thus,
denoting the basal velocity by vs = (us, ws), the kinematic boundary condition
at z = b(x) is given by

ub
vb
vx

= wb. (2.6)

Further, we allow the solid phase to slip at the base and generate a Coulomb
shear stress, which will be formulated below. At the interface between the dilute
and dense layers, z = c(x , t), we impose conditions that conserve the mass flux of
each species and the combined momentum flux. Denoting the unit normal to the
interface by n̂2 and the velocity of the interface by vi, we impose

[(vg − vi). n̂2(1 − f)]+− = 0, (2.7)

[(vs − vi). n̂2f]+− = 0 (2.8)

and [rg(1 − f)(vg − vi). n̂2vg]+− + [rsf(vs − vi). n̂2vs]+−
= [−Pn̂2 + (ttt + sss). n̂2]+−, (2.9)

where [. . .]+− denotes the evaluation of the terms within the brackets either side
of the interface.

The above presentation provides a description of the two-layer flow. However,
we now simplify the models for the dynamics in the two layers by first imposing
the shallow-layer approximation and then by depth integration. Under the
shallow-layer approximation, the motion is taken to be predominantly parallel
to the underlying boundary, and the vertical accelerations of each phase are
assumed negligible. Then to leading order, the dominant balances in the vertical
component of the combined momentum equation are

0 = −vP
vz

− bg cos q and 0 = vszz

vz
− bbg cos q, (2.10)

in the dilute current (c < z < f ) and dense current (b < z < c), respectively. In
addition, the assumption of shallowness implies that the interfaces are locally
parallel with the underlying boundary and so n̂1 = n̂2 = ẑ. Thus, the continuity of
the mass fluxes of each phase at the interface z = c implies that

wi = wg + u cos q
fc(1 − fb)
(fb − fc)

= wb + u cos q
fc(1 − fc)
(fb − fc)

, (2.11)

where fc denotes the concentration at z = c+. These may be further simplified
given that the upper layer is dilute (fc � 1, fc � fb) to yield

wi = wg + u cos q
fc(1 − fb)

fb
+ · · · = wb + u cos q

fc

fb
+ · · · . (2.12)

We may now integrate the expression for the conservation of fluid mass to O(fc),

vH
vt

+ v

vx

∫ f

c
ug dz = 0, (2.13)
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where the height of the layer, H = f − c. Next, we integrate the equation
governing the evolution of the volume fraction of particles, after first neglecting
the streamwise diffusive flux (Kvf/vx) in comparison to the vertical diffusive
flux (Kvf/vz), which follows owing to the assumption of shallowness. Further,
as described above, we assume that us = ug and ws = wg − u cos q and impose the
boundary conditions of no flux of particles through the top of the layer (z = f )
and no erosion of particles at z = c (where Kvf/vz = 0). Thus, we find that to
leading order,

v

vt

∫ f

c
f dz + v

vx

∫ f

c
fug dz = −fcu cos q. (2.14)

We now analyse the streamwise component of the combined momentum equation
for the dilute layer. First, we construct the pressure field, which is in hydrostatic
balance to leading order. Imposing P = P0 at some distant elevated, horizontal
surface z = (H0 + x sin q)/ cos q, we find

P = P0 + (H0 + x sin q − f cos q)rag +
∫ f

z
bg cos q dz . (2.15)

Then, on the assumption that the streamwise velocity, ug, is independent of depth,
we find that the leading-order expression for momentum balance is given by

v

vt

∫ f

c
bug dz + v

vx

∫ f

c
bu2

g dz + v

vx

∫ f

c
(z − c)(b − ra)g cos q dz

=
∫ f

c
(b − ra)g

(
sin q − cos q

vc
vx

)
dz − rsfcu cos qug(c) − tc, (2.16)

where vtxx/vx is negligible relative to vtxz/vz and the shear stress on the upper
surface is neglected. The terms on the right-hand side of this momentum equation
represent the downslope acceleration, the momentum lost from the dilute current
owing to the particulate settling and the interfacial drag, which we model as
proportional to the square of the velocity difference between the layers

tc = CDb(ug − ub)|ug − ub|. (2.17)

This parametrization is analogous to a basal drag (e.g. Parker et al. 1986; Hogg
et al. 2005), and we adopt a small drag coefficient CD = 0.001.

Now we depth-integrate the equations that model the dense basal layer, which
has a height of h = c − b. First, mass conservation yields

vh
vt

+ v

vx

∫ c

b
ub dz = u cos q

fc

fb
. (2.18)

The interfacial conditions at z = c imply, to leading order in terms of the volume
fraction, f, that both the shear and normal stress are continuous. Thus, szz(c) =
−P(c), and so integrating the expression for hydrostatic balance, we find that

−szz = bbg cos q(c − z) + (P0 + x sin q − f cos q)rag sin q +
∫ f

c
bg cos q dz . (2.19)
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Next, we assume that the stress tensor is isotropic and so sxx = szz (see
Pouliquen & Forterre 2002; Gray et al. 2003; Mangeney-Castelnau et al. 2003).
Then, integrating the combined expression of momentum balance for both
phases yields

v

vt

∫ c

b
bbub dz + v

vx

∫ c

b
bbu2

b dz + v

vx

∫ c

b
(c − z)(bb − ra)g dz

= (bb − ra)gh
(

sin q − cos q
vb
vx

)
− gh cos q

v

vx

∫ f

c
(b − ra) dz

+ bbu cos qfcug(c)
fb

+ sxz(c) − sxz(b). (2.20)

The terms on the right-hand side of this equation represent the downslope
acceleration, the pressure gradient associated with variations in the height of the
overlying dilute layer, the flux of streamwise momentum from the dilute to the
dense layer associated with the mass flux across the interface and the interfacial
and basal drags. The latter is modelled using a Coulomb-like description
so that

sxz(b) = − ub

|ub|szz(b) tan d = ub

|ub|bbg(c − b) cos q tan d, (2.21)

where d is the dynamic angle of friction (Savage & Hutter 1989). The basal drag
sxz(z = b) far exceeds the interfacial drag sxz(z = c) = tc, and so the latter may
be neglected, unless the height of the basal flow is small (§4).

We now replace the integrals with averaged quantities. First, we define

∫ f

c
ug dz = Hūg,

∫ c

b
ub dz = hūb and

∫ f

c
f dz = H f̄. (2.22)

This implies an averaged bulk density of b̄ = rg + f̄(rs − rg). We then assume that

∫ f

c
bu2

g dz = b̄ū2
gH ,

∫ c

b
bbu2

b dz = b̄bū2
bh,

∫ f

c
fu2

g dz = f̄ūgH and

∫ f

c
(z − c)(b − ra) dz = 1

2
H 2[(rs − rg)f̄ + rg − ra]. (2.23)

These expressions are exact identities only when the volume fraction and velocity
fields are vertically uniform. Finally, we evaluate the volume fraction and velocity
fields at the interface z = c, and to this end we assume that they adopt the
average values ug(c) = ūg and fc = f̄. Some studies have included factors to
account for non-uniformities in the vertical structure of these fields (Parker
et al. 1986; Hogg & Pritchard 2004). However, we neglect such factors in
this study.

Finally, we present the system of governing equations for this two-layer model
of pyroclastic flows. For the dilute layer, we have the following expressions for
the mass conservation of the gas phase (2.24) and the combined mixture (2.25),
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and the corresponding combined balance of momentum (2.26):

vH
vt

+ v

vx
(ūgH ) = 0, (2.24)

v

vt
(b̄H ) + v

vx
(b̄ūgH ) = −u cos q(rs − rg)f̄ (2.25)

and
v

vt
(b̄Hūg) + v

vx
(b̄ū2

gH ) + 1
2

v

vx
((b̄ − ra)g cos qH 2)

= (b̄ − ra)gH (sin q − cos q
vc
vx

) − tc − rsf̄ūgu cos q. (2.26)

Note that in the derivation of the pressure terms, we have neglected curvature
terms of O(vxq(x)). However, changes in the average slope angle and thus weak
curvature effects are still incorporated implicitly, via q(x) (Savage & Nohguchi
1988).

For the dense basal layer, we may further simplify the governing equations
by noting that bb � ra and thus obtain the following equations that govern the
evolution of the mass and momentum of the flow:

vh
vt

+ v

vx
(ūbh) = u cos qf̄

fb
(2.27)

and

v

vt
(hūb) + v

vx
(ū2

bh) + 1
2

v

vx
(g cos qh2) = gh cos q

(
tan q − vb

vx
− tan d

)

− gh cos q

bb

v

vx
((b̄ − ra)H ) + sxz(c)

bb
+ f̄ūgu cos q

fb
. (2.28)

The second term on the right-hand side of equation (2.28) represents the
pressure gradient on the basal layer exerted by variations in the height of the
overlying dilute layer. This effect is negligible provided v(b̄ − ra)H /vx � bbvh/vx ,
a condition that is usually satisfied.

3. Numerical method

We use the finite-volume method (Leveque 2002) to solve these governing
equations, adopting a first-order upwind Godunov approach (for full details,
see Doyle 2007). This conservative approach is commonly adopted for shallow-
water-type flows (e.g. Denlinger & Iverson 2004), and we use it owing to its
shock-capturing capabilities, and its ability to apply the boundary conditions
non-invasively. This numerical method solves a system of hyperbolic equations
of the nonlinear form qt + f (q)x = j(q, x , t), where q = q(x , t) ∈ Rm . The terms
j(q, x , t) are referred to as the source terms. We adopt the Godunov fractional
step approach (Leveque 2002) to include these terms, where the full equation is
split into two problems: (i) qt + f (q)x = 0 and (ii) qt = j(q), and solved using the
procedure described in appendix A.
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(a) Basal-flow numerical method

To use the entire structure of the Riemann solver in the Godunov method is
expensive (appendix A). Thus, for the basal-flow equations (2.27) and (2.28),
we use the standard shallow-water Roe averages (Leveque 2002; Denlinger &
Iverson 2004; Larrieu et al. 2006). The source terms are included via the
fractional step approach, where they are further split into linear (basal friction,
sedimentation, gravitational driving) and spatial (topographic) contributions. We
use the flux-difference splitting method of Hubbard & Garcia-Navarro (2000) to
solve the spatial source contributions, which are decomposed in a manner similar
to the main finite-volume step (Hubbard & Dodd 2002; Denlinger & Iverson
2004). This method ensures that the appropriate equilibria of the underlying
mathematical model are maintained by the numerical scheme. The linear source
terms are then solved via the TRBDF2 (second-order trapezoidal rule and
backward difference formula) method (Leveque 2002), which is composed of a
two-step Runge–Kutta and implicit trapezoid BDF (backward difference formula)
method.1

(b) Dilute current numerical method

The first-order, upwind, Godunov method is also used for the dilute current
(2.24)–(2.26), again adopting a fractional-step approach. However, it is not
possible to find a suitable conservative Roe average state that obeys the required
conditions for an approximate Riemann solver (Doyle 2007). Thus, we use the
alternative ‘f-wave’ approach (Leveque 2002; Bale et al. 2003), which guarantees
numerical conservation when any linearization of the governing equations is made.
This approach, described in appendix B, still splits the problem into two steps;
however, any spatial source terms are included in the fluctuation calculations
of the initial Godunov step and not treated separately. Linear source terms are
handled in the same manner as the basal flow.

(c) Code development and validation

For both layers, the numerical code is developed in C++ (Doyle 2007).
Following (Leveque 2002), we impose a Courant–Friedrich–Levy condition to
preserve stability, ensure convergence and control the time step. In the basal-flow
layer, a Harten–Hyman entropy fix prevents the generation of entropy-violating
shock waves, and a modified version of this fix is used for the f-wave method in
the upper dilute current (appendix C). For both layers, we impose a stationary
negligible prelayer of height e = 10−8 m, to prevent non-physical numerical
solutions in both the Roe and f-wave solvers, owing to division by zero height (h or
H = 0) (e.g. Larrieu et al. 2006). Solutions do not depend upon minor variations
to this prelayer value. For the dilute current, this prelayer is composed of a very
dilute concentration of particles (f0 = 10−8) suspended in the ambient air ra.

1The TRBDF2 formulae is erroneously reported in Leveque (2002), and should be Q∗∗
i = Q∗

i +
Dt
4 [j(Q∗

i ) + j(Q∗∗
i )] and Qn+1

i = 1
3 [4Q∗∗

i − Q∗
i + Dtj(Qn+1

i )] for the stiff ordinary differential
equation qt = j(q), where Q is the solution sought at time step n + 1 and grid node i.
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Figure 2. Validation of the numerical method. (a) The basal flow (dashed line), when Dx = 0.1 m,
against the analytical solution of Mangeney et al. (2000) (solid line) for q = 30◦ and d = 10◦, at
t = 10 s, Hl = 20 m, Hr = e and ur = ul = 0. (b) Solution at the flow front: with Dx = 0.1 m (dashed
line), solutions between Dx = 0.5 and 5 m (dotted lines), and analytical (solid line). Arrow indicates
solution as grid coarsens. (c) The top corner of the flow profile, key in (b). The flow front differs
by 2.5% from the analytical solution for Dx = 0.1 m, increasing to less than 5% for Dx = 5 m. (d)
The dilute current. The solution of a typical dry dam-break release at t = 2 s. Initial conditions:
Hl = 3 m, Hr = e, ur = ul = 0 (dotted line). Results shown are for no entropy fix (solid line), and
with the entropy fix (dashed line) discussed in §3c and appendix C. Dotted line, t = 0 s.

A reflective boundary condition is imposed at the left origin (x = 0 m), and an
outflow condition is assumed for the right boundary. The dense basal front xgf
is determined by the location where the height h reduces to the minimum grain
size of 100 mm, and the dilute current front xbf where the bulk density equals
that in the prelayer ba(fa) (§2). Dilute current calculations continue until the
average bulk density b̃, along its length, is within 10 per cent of the ambient
density ba = f (fa).

The numerical solver for the dense basal layer is validated against the classic
shallow-water dry dam-break solution (Ritter 1892), and the analytical results of
Mangeney et al. (2000) for flows down a slope with friction (figure 2a–c). The
numerical solver for the dilute current is also validated against the analytical
dam-break solution (Ritter 1892; Leveque 2002), demonstrating that the modified
entropy fix produces accurate results (figure 2d). In addition, the correct solution
is found for a dam-break solution with a tailwater (Stoker 1957). Finally, we
validate the numerical method for the inclusion of the basal topography terms
against the example test cases of Leveque (1998), Hubbard & Garcia-Navarro
(2000) and Caleffi et al. (2003), with a difference of less than 1.5 per cent
between the height profiles produced by both the dense basal and dilute current
flows (Doyle 2007). For both numerical layers, runouts differ by less than
0.5 per cent for grids of 2 or 5 m. Thus, calculations with initial collapsing
column heights of H0 ≤ 1100 m use 2 m cells, and calculations with taller columns
use 5 m cells.
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4. Examples of discrete eruption-column collapses

We now present two contrasting model calculations, to illustrate dense and dilute
end-member flow behaviours. For these, we assume u cos qẑ ∼ uẑ and an aspect
ratio a = H0/x0 = 3, where x0 is the half-width of the instantaneous, constant
volume, column collapse. Although this initial aspect ratio is relatively large,
it is reasonable to assume that the shallow-water model provides an accurate
description of the motion after the earliest stages of propagation. The derived
basal flow has a bulk concentration of fb = 0.5, consistent with field estimates
(Sparks 1976; Druitt 1998), with a basal friction angle of d=10◦ (e.g. Freundt
1999). The basal drag sxz(z = b) far exceeds the interfacial drag sxz(z = c) = tc,
and so the latter is neglected (§2), and we investigate the effect of this assumption
in §4. We additionally neglect the pressure gradient imposed on the basal layer
owing to the overlying dilute-layer height (2.28). All columns are released from
rest over a simplified terrain, encompassing a slope inclined at q = 13◦ for 10 km
flanked by a 1◦ plateau to 25 km, where there is a gradual, even, decrease in slope
from 13◦ to 1◦ over a distance of 1 km.

For a short (H0 = 550 m), coarse-grained (d = 8 mm) column, the current
transfers all its mass to the basal flow while still on the inclined slope
(figure 3a). At this time, the derived basal flow has a wedge-shaped morphology,
thinning towards the basal-flow front (figure 3b). The slope angle exceeds the
basal friction angle d, and thus independent motion of the basal flow occurs
(figure 3a). This results in a thickening of the basal flow towards its front
(figure 3c). The basal flow does not finally come to rest until it reaches the
low angled plateau, where frictional deceleration occurs (figure 3a,d). Thus,
the column collapse is dominated by a dense basal flow for the majority of
its total propagation time. For a tall (H0 = 1600 m), fine-grained (d = 550 mm)
column, the basal flow exhibits very different behaviour (figure 4a). The dilute
current retains significant suspended mass when it reaches the low angled
plateau, and frictional forces dominate the basal flow, preventing it from
outrunning its parent flow. The final deposit thins towards its front (figure 4b),
with a localized thickening at the back owing to material settling from the
steeper slopes in that region. For these initial conditions, the propagation of
the collapse is dominated by a dilute current for the majority of its total
propagation time.

For these two simulations, the basal flow’s interfacial drag with the upper
dilute current sxz(z = c) = tc is neglected, on the assumption that the basal drag
far exceeds it (§2). However, as discussed by Pudasaini & Hutter (2007), if mass
is added to the top of the basal flow, this mass must also be accelerated to
reach the motion of the particles at the top, and the traction may no longer
vanish at the upper surface. If instead we assume a continuous stress across
the interface, the imposed traction on the surface of the basal flow results in
an increase in the basal velocity. For the short, coarse-grained column, this
decreases the final runout time by 8 per cent, and runout distance by less than
1 per cent (figure 5). For the tall, fine-grained column, this causes the basal-
flow front to propagate independently beyond the termination distance of the
dilute current, decelerating on the plateau until it comes to rest (figure 5).
This is not observed for the stress-free calculations (figure 4a). However, the
continuous-stress assumption has a minimal effect upon the upper dilute current,
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Figure 3. (a) The front position of the dense basal flow as a function of time, for H0 = 550 m,
d = 8 mm, rs = 1000 kg m−3 and f0 = 0.01. Initially, the basal flow-front equals the upper dilute
current front. This dilute current loses all its mass (terminates) within 2 km of the origin, beyond
which the basal flow propagates independently. The horizontal lines indicate the gradual change
between the 13◦ slope and 1◦ plateau. (b) The height h of the basal flow when the upper dilute
current terminates, (c) when it reaches the low angled plateau and (d) when all mass has come to
rest on the plateau, analogous to the final deposit.

60 80
t (s) x (km)

0

5

10

15

20

x 
(k

m
)

10 12 14 16 18
0

10

20

30

40

50

H
 (

m
)

0

5

10

15

20

25

10 12 14 16
0

0.25

0.50dilute current
terminates

(b)

(c)

(a)

4020

b 
(k

g 
m

–3
)

~

Figure 4. (a) The front position x (solid line) of the dense basal flow as a function of time, for
H0 = 1600 m, d = 500 mm, rs = 2000 kg m−3 and f0 = 0.01. The front of the basal flow always equals
that of the upper dilute current, which does not come to rest until it has reached the low angled
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The height h of the basal flow when all mass has come to rest on the plateau. (c) Zoomed in on (b)
to show the thin deposit formed during the later stages of the dilute-current propagation on the
plateau, and the thicker deposit at the back owing to draining of material from the steep slope.
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Figure 5. The front position of the dense basal flow with respect to time for H0 = 1600 and 550 m,
assuming a stress-free basal flow (solid lines) and a continuous stress across the interface with the
dilute current (dashed lines). All other parameters as in figures 3 and 4. Inset figure shows details
of the later stages of the 1600 m column collapse, which terminates at the arrow location for both
stress approaches. The basal flow then continues to propagate for the continuous-stress approach
(dashed line) and not for the stress-free approach (solid line). However, for the 550 m column, the
basal flow continues to propagate beyond the dilute current for both stress approaches.

with only a minor decrease in its basal drag. For the tall, fine-grained column,
this results in a slight increase in the propagation velocity of the dilute current
towards the end of its propagation, with a decrease in stoppage time of less
than 1 per cent. The maximum propagation distance of the dilute current, for
both initial column heights, is negligibly different when either stress assumption
is adopted.

5. Steady flow

Pyroclastic currents can establish a steady state, if fed continuously for the
duration of a sustained column-collapse eruption, which can last several hours
(Sparks et al. 1978; Branney & Kokelaar 1992). It is thus insightful to examine the
steady, spatially evolving, two-layer motion predicted by this model, as these flows
clearly illustrate the important coupling between the two layers and the possibility
for independent dynamics. To this end, we seek steady solutions for the heights
and velocities of each layer (H (x), ūg(x), h(x), ūb(x)) as well as the average bulk
density of the upper dilute layer (b̄(x)). Under these steady conditions, the
expressions for the conservation of mass decouple from the momentum equations
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and may be integrated to give

Hūg = q, (5.1)

b̄ = rg + (rs − rg)f0 exp
(−u cos qx

q

)
(5.2)

and hūb = f0q
fb

(
1 − exp

(−u cos qx
q

))
, (5.3)

where q and f0 denote the volume flux of fluid per unit width and the initial
concentration of particles fed into the dilute ash cloud at the source. It is further
assumed that there is initially no flux of material in the underlying dense layer.
The key feature of the flow is that the volume fraction of particles in the dilute
current decays exponentially (5.2), and thus delivers a progressively diminishing
flux into the dense layer.

To complete the solutions, we must integrate the momentum equations, noting
that, very close to the source, the height of the dense layer h(x) is sufficiently
small so that the interfacial drag with the overlying dilute layer cannot be
neglected. Further, we deduce that if the drag is written as equation (2.17), then
at the source, the basal velocity ūb(0) is equal to the ash-cloud velocity ūg(0).
Finally, we specify this source velocity provided the conditions at the source
are supercritical (b̄(0)ūg(0)2 > (b̄(0) − ra)gH (0)); if they are subcritical, then the
problem is already fully determined.

For flows along a planar surface (vb/vx ≡ 0), we find that the momentum
equations are given by

ūg
vūg

vx
+ (b̄ − ra)g cos q

b̄

vH
vx

+ gH cos q

2b̄

vb̄

vx
= (b̄ − ra)

b̄

(
tan q − vh

vx

)
g cos q − tc

b̄H
(5.4)

and

ūb
vūb

vx
+ vh

vx
g cos q = (tan q − tan d)g cos q + tc

bbh
− g cos q

bb

v

vx
((b̄ − ra)H ). (5.5)

We integrate these equations until the bulk density of the dilute layer falls to the
density of the surrounding atmosphere, at which point any residual particles in
the ash cloud are lofted into the atmosphere. This occurs at

x = − q
u cos q

log
(

ra − rg

(rs − rg)f0

)
. (5.6)

The spatial evolution of the flow, for a given choice of parameters, is illustrated in
figure 6. We note that over this distance the dilute ash cloud accelerates and thins,
and that the dense basal flow also accelerates but thickens owing to the source of
particulate from the overlying layer. The acceleration of the dilute current is due
to the downslope gravitational acceleration exceeding the deceleration associated
with the sedimentation-related reduction of bulk density. For other parameter
values, we can find flows that may initially accelerate, but then rapidly slow as the
loss of suspended particles strongly affects the overall dynamics. It is noteworthy
that for the calculated fields plotted in figure 6a–c, the effects of interfacial drag
are negligible, apart from being very close to the source. In addition, the height
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Figure 6. The velocities (ūg, ūb) and heights (H , h) of the dilute and dense layers, and the
bulk density of the dilute layer (b̄), as a function of the distance from source, under steady-
flow conditions: q = 20 000 m2 s−1, ra = 1 kg m−3, rg = 0.6 kg m−3, rs = 2000 kg m−3, g = 9.81 m s−2,
q = 13◦, u = 5 m s−1, ūg(0) = 100 m s−1, illustrated up to the distance where the dilute current’s
density falls to that of the atmosphere, given by equation (5.6). Propagation is shown for (a,b)
d = 10◦ and (d,e) d = 4◦. The evolution of the bulk density for the dilute current (c) is the same for
both basal friction angles. (a,d) Solid line, ūb; dashed line, ūg. (b,c) Dashed line, H ; solid line, h.
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of the dense layer remains much smaller than that of the dilute layer because
the density of the dilute layer is so much smaller than that of the dense layer
(b � bb). This implies that, to leading order, the velocity of the dense layer is
given by

ūb(x) = (ūb(0)2 + 2x(tan q − tan d)g cos q)1/2, (5.7)

and thus, for some parameter values, it is possible for the velocity of the dense
layer to exceed that of the dilute layer (figure 6d,e), illustrating the independent
layer dynamics.

After the dilute ash-cloud lofts, the volume flux of particles per unit width in
the dense layer then remains constant and is given by

ūbh = rsf0q
bb

(
1 − ra − rg

(rs − rg)f0

)
. (5.8)

Thereafter, the dynamics evolve according to equation (5.5) and the effects of
interfacial drag are now negligible. When tan q > tan d, the flow continues to
accelerate down the plane. However, when the surrounding plateau is reached,
the basal drag now exceeds the downslope acceleration and the flow begins to
decelerate. The ensuing dynamics are complicated because the motion becomes
time dependent and may feature bores that adjust the fast-moving granular layer
to a more slowly moving, or arrested, pile of grains.

6. Discussion and conclusions

Dominant flow behaviour in the pyroclastic current is expected to be very different
for dense flows and dilute surges, and to change owing to topography and blocking
of the dense underflow (e.g. Fisher 1990; Browne & Gardner 2005). Evidence of
spatial changes in deposits can be used to infer changes in the character of the
flow with time and distance. For example, proximal lag breccia and cross-stratified
surge deposits have been interpreted as being formed when the flow is in an initial
expanded and dilute state (Sparks 1976; Druitt & Sparks 1982; Calder et al. 2000).
Distal changes to massive deposits, commonly characterized by light pumice at
the top and dense lithics at the base, suggest transformation to predominantly
dense flows with distance, as occurs during eruption-column collapse (§1). These
spatial variations in deposit and flow properties require consideration within the
framework of models that incorporate the dual character of the flows, capturing
the fundamentally different physics of both the dilute and dense regions. Our
theory provides an approach to coupling the two components based on mass
transfer from the dilute part to the dense flow. This two-layer model has the
capability to capture spatial changes in flow dominance, where the independent
propagation of each flow layer can be demonstrated for both steady and discrete
flows (§§4 and 5).

This model idealization focuses on the formation of dense pyroclastic flows
by concentrating on sedimentation processes. There are thus several caveats
implicit to these results. The model is only in the depositional regime, the upward
entrainment or erosion of particles from the basal flow back into the upper dilute
current, and the effect that this has on the stress coupling at the interface has
not been treated. The formation of further upper ash clouds from the surface of
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the dense basal flow can be incorporated into the model via shear, elutriation or
an upward gas flux (Denlinger 1987; Takahashi & Tsujimoto 2000). This upward
migration of particles could be incorporated via a negligibly thin re-suspension
interface layer (§1, Zwinger et al. 2003). However, observations indicate that the
interface is more probably a sharp transition than a transition zone (§1), and that
sedimentation dominates flow propagation.

In our model idealization, we do not consider air entrainment (§2). Entrainment
does not alter the buoyancy of the current (Hallworth et al. 1996), as any
thickening of the current is balanced by a reduction in density owing to a dilution
of the suspended particles, but it does induce an effective drag as entrained fluid
is accelerated to the velocity of the dilute current. Entrainment-related dilution
of the dilute current is expected to reduce the flux of particulate settling into
the dense basal layer, and thus decrease the rate at which the basal layer forms.
In turn, the upper dilute current may actually travel farther than that predicted
by our model. Future development of this model could incorporate entrainment
effects in the manner of Ellison & Turner (1959) and Parker et al. (1986), and
compressibility in the manner of Timmermans et al. (2001).

Further development of the upper turbulent dilute-current model could also
include a thermal-energy equation (e.g. Denlinger 1987; Takahashi & Tsujimoto
2000), a hindered settling velocity to represent how particle settling can be
dependent upon the concentration of fines present (Druitt 1995), and an
erosional term. Future models will thus need to develop criteria to discriminate
between erosional basal flow or deposit formation. Further sophistication of the
numerical method at the flow front could include the use of the kinetic scheme
of Mangeney-Castelnau et al. (2003) that can handle discontinuous solutions,
instead of applying a negligible prelayer throughout the domain (§3).

The primary goal of most pyroclastic current models is to be used as a tool for
hazard analysis and assessment. It is thus vital to model these pyroclastic currents
correctly. Only by including both the initial dilute cloud and the formation
of derived dense basal flows can the maximum potential runout distance be
calculated. Our focus here has been the development of such a two-layer model.
The results demonstrate that if only dilute-current physics or single-layer models
are adopted, then they are likely to underestimate the maximum runout of the
current, as they do not model the generation of dense basal flows. This may have
severe consequences for cases where the basal flow out-runs the dilute surge by
large distances.
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and development. E.E.D. was supported by a UK Natural Environment Research Council
PhD grant no: NER/S/A/2003/11201, and acknowledges code-development advice from Michael
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Centre and the Department of Mathematics, both at Bristol University.

Appendix A. The Godunov numerical method

The first hyperbolic problem qt + f (q)x = 0 is approximated to its linear form
by finding the Jacobian A(x , t) for the system of equations and setting qt +
A(x , t)qx = 0 (Leveque 2002). A Riemann solver is then specified for any two
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cell-average states in space Qi−1 and Qi , returning a set of Mw waves W p
i−1/2

with speeds sp
i−1/2 that satisfy

∑Mw
p=1 W p

i−1/2 = Qi − Qi−1 ≡ DQi−1/2. These waves
are defined by W p

i−1/2 = a
p
i−1/2r

p
i−1/2, where rp

i−1/2 is the pth eigenvector of Ai−1/2,
and a

p
i−1/2 is a vector of coefficients defined by ap = l p(qr − ql) = l p(Qi − Qi−1),

and l pi−1/2 are the corresponding left eigenvectors. This exact Riemann solver
thus provides left- and right-going fluctuations to split the flux into and out of
each cell via A±DQi−1/2 = ∑

p(s
p
i−1/2)

±W p
i−1/2. The solution at each cell centre

for each time step is then found via the first-order, upwind Godunov method
(Leveque 2002): Qn+1

i = Qn
i − Dt[A+DQi−1/2 + A−DQi+1/2]/Dx . After completion

of this step, the source terms qt = j(q) are usually included via standard ODE
solvers, which are discussed further in Leveque (2002).

Appendix B. The f-wave approach

The flux difference between cells is split into waves Zp
i−1/2, travelling at speeds of

sp
i−1/2, and directly decomposed as a linear combination of the eigenvectors rp

i−1/2
of the Jacobian Ai−1/2, via (Bale et al. 2003)

f (Qi) − f (Qi−1) − DxJsi−1/2 =
Mw∑
p

U
p
i−1/2r̂

p
i−1/2 =

Mw∑
p

Zp
i−1/2, (B 1)

where Jsi−1/2 is the discretized spatial source term, the coefficients U
p
i−1/2

are defined by U
p
i−1/2 = R−1

i−1/2(f (Qi) − f (Qi−1)) and R is the matrix of right
eigenvectors of the Jacobian. The dilute current’s (2.24)–(2.26) Jacobian is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0

g cos q
H
2

− u2 2u (b − 2ra)g cos q
H
2

−u
b

1
b

u

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B 2)

with the eigenvalues l1,3 = u ∓ √
(1 − ra/b)gH cos q, l2 = u, simplified to l1,3 =

u ∓ c and l2 = u, and c = √
(1 − ra/b)gH cos q (Doyle 2007). The right-going

eigenvectors are thus

r1,3 =

⎡
⎢⎢⎣

1
u ∓ c

1
b

⎤
⎥⎥⎦ and r2 =

⎡
⎣ 2ra − b

(2ra − b)u
1

⎤
⎦, (B 3)

and the left-going eigenvectors are (where d = 2ra − b)

l1,3 =
[
±

(
bu ± cb − ud

2c(b − d)

)
, ∓ 1

2c
,

−bd
2(b − d)

]
and l2 =

[ −1
b − d

, 0,
b

b − d

]
.

(B 4)
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Adopting a linearization of the governing equations, such that f (Qi) −
f (Qi−1) = Âi−1/2(Qi − Qi−1), leads to a set of left- and right-going fluctuations
across the interface between the cells at i − 1 and i,

A−DQi−1/2 =
∑

p:ŝp
i−1/2<0

Zp
i−1/2 and A+DQi−1/2 =

∑
p:ŝp

i−1/2>0

Zp
i−1/2. (B 5)

These are then used in the upwind Godunov algorithm (Leveque 2002). The
chosen average state is not critical to this f-wave method, thus we use the averages

û = 1
2
(ul + ur), Ĥ = 1

2
(Hl + Hr), b̂ = bH

H̄
= (bH )l + (bH )r

Hl + Hr
and

ĉ =
√

Ĥ ĝc

(
1 − ra

b̂

)
, (B 6)

and ĝc = g(cos ql + cos qr)/2 to define the eigenvalues and eigenvectors, using the
values in the cell to the left (l = i − 1) and right (r = i) of the cell interface. The
spatial source terms (2.24)–(2.26) are then defined by

js(q, x) =
⎡
⎢⎣

0

−vc
vx

(ra − b)gH cos q

0

⎤
⎥⎦, (B 7)

which is discretized at the cell edges to Js,i−1/2 = b̂(ci − ci−1)gĤ cos q̂/Dx (Lowe
2005) and included in the f-wave decomposition (equation (B 1)). The averages at
the cell interface b̂, Ĥ and q̂ = (qi + qi−1)/2 are used instead of the exact values
at the cell centre to ensure that the appropriate equilibria of the underlying
mathematical model are maintained by the numerical scheme (Hubbard &
Garcia-Navarro 2000). Finally, the linear source terms jl(q, x) (sedimentation,
gravitational driving, basal drag) are incorporated via an additional fractional
step, which we solve using the fourth-order Runge–Kutta method.

Appendix C. Incorporating an entropy fix in the dilute-current
numerical method

When the exact eigenvalues, describing the numerical-solution wave speeds,
calculated in the left and right cells of the interface obey ll < 0 < lr, then a
transonic rarefaction exists (Leveque 2002). This spreads partly to the left and
right of the cell interface and, if incorrectly modelled, can lead to entropy-violating
shocks in the numerical solutions. For the basal flow, we employ a Harten–Hyman
entropy fix, which modifies the eigenvalues by partitioning them into the correct
left- and right-going directions. The f-wave version of the Godunov method is
defined directly from the waves themselves (equation (B 5)). Thus, for the upper
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dilute current, a modification of this Harten–Hyman entropy fix is required. We
employ a partitioning of the f-wave fluctuation directly, such that

A−DQi−1/2 =
∑

p:ŝp
i−1/2<h

(
ŝp
1−i/2 − lr

ll − lr

) (
ll

ŝp
1−i/2

)
Zp

i−1/2 (C 1)

and

A+DQi−1/2 =
∑

p:ŝp
i−1/2>h

[
1 −

(
ŝp
1−i/2 − lr

ll − lr

) (
lr

ŝp
1−i/2

)]
Zp

i−1/2, (C 2)

using the Jacobians, eigenvalues and source terms defined in appendix B. This is
an extension on the fix proposed by R. J. Leveque, available at http://www.
amath.washington.edu/∼claw/extensions/clawman/2d/examples/sphere/ (last
viewed 11 June 2007). We have introduced the modifiers ll/ŝ

p
1−i/2 and lr/ŝ

p
1−i/2 to

produce stable and accurate results. To prevent division by zero, and correctly
partition the waves, the small number h has been introduced into expressions
(C 1) and (C 2) to control the summation. If the average eigenvalue at the
cell interface is ŝp

i−1/2 < −h, all waves are left-going, assuming that l̂ ≈ ŝp
i−1/2.

If ŝp
i−1/2 > h, all waves are right-going and thus if −h < ŝp

i−1/2 < h, the waves are
split equally between left- and right-going fluctuations. However, if the exact
eigenvalue calculated for this wave in the cell to the left of this interface also obeys
ll < −h and to the right obeys lr > h, then the wave is a transonic rarefaction
and the above entropy fix (C 1) and (C 2) must be applied.
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