

活断層の長さから推定される地震モーメント: 日本海「最大」クラスの津波断層モデルについて 島崎邦彦(東京大学)

Seismic moment estimated from the length of active fault:

Are "max" tsunami in the Japan Sea designated by the Ministry of Land,

Infrastructure, Transport and Tourism, really maximum?

Kunihiko Shimazaki (UTokyo)

地震モーメントを活断層の長さから推定する場合、注意が必要である。特に津波災害軽減等のために用いる場合、津波の高さが過小評価される恐れがある。昨年9月に発表された、日本海の「最大クラス」の地震による津波想定では、入倉・三宅(2001)の式に基づき地震モーメントが推定された(『日本海における大規模地震に関する調査検討会報告書』日本海における大規模地震に関する調査検討会報告書』日本海における大規模地震に関する調査検討会、国土交通省)。この結果、地域によっては「想定外」を繰り返えす恐れがある。

断層モデルを想定する際には、震源断層の長さ(あるいは面積)と地震モーメントとの関係式が使われる。ここで、地震発生前に使用できるのは活断層の情報であって、震源断層のものではないことに注意しなければならない。

日本の陸域およびその周辺の地殻内浅発地震(マグニチュード7程度以上)について、断層 長L(m)と地震モーメントMo(Nm)との関係式をわかりやすさを重視して表現すると、前回 の学会でお話ししたように、次のようになる。

- (1) Mo = 4.37 x 10¹⁰ x L² (武村, 1998)
- (2) Mo = $3.80 \times 10^{10} \times L^2$ (Yamanaka & Shimazaki, 1990)
- (3) Mo = 3.35 x 10¹⁰ x L^{1.95} (地震調査委, 2006)
- (4) Mo = $1.09 \times 10^{10} \times L^2$ (入倉・三宅, 2001で、厚さ14kmの地震発生層中の垂直な 断層を仮定した場合)

入倉・三宅 (2001) では地震モーメントと断層面積との関係式が提案されており、断層の傾斜角を 60 度とした場合には、係数が 1.09 ではなく 1.45 となる。(4) と他との差異は顕著で、推定される地震モーメントの値は、他にくらべて著しく小さい。

上記の関係式中の L として、活断層の長さを用いた場合の地震モーメントの推定値と、活断層で発生した地震の地震モーメントの観測値とを 1891 年濃尾地震、1930 年北伊豆地震、2011年4月11日福島県浜通りの地震で比較し、さらに 1927年北丹後地震、1943年鳥取地震、1945年三河地震、1995年兵庫県南部地震で検討した。結果を表に示す。例は少ないが (4)を用いると地震モーメントが過小評価される傾向が明らかとなった。

原子力発電所の津波想定では通常(1)武村(1998)が使われる。一方、昨年9月に発表された、日本海の「最大クラス」の地震による津波想定では、入倉・三宅(2001)の式が用いられた。断層の傾斜角が60-90度で、断層のずれが大きい場合には、上記報告書の津波高さが過小評価である可能性があり、慎重な検討が必要である。

津波の高さと、ほぼ比例すると考えられる断層のずれの量(平均値)を計算してみた。郷村断層の延長部は、(1)を用いた場合には5.4mとなるのに対し、上記報告書では2.8mである。 鳥取沖の断層では(1)により7.6mと推定されるのに対し、報告書では4.0mに過ぎない。推定される津波高さの、倍程度の津波に襲われても大丈夫なのか。

	OBS	T	YS	ERC	IM
1891	180	210	180	130	52
1930	27	32	28	21	7.9
2011	11	17	14	11	5.5
1927	46	48	41	19	12
1943	36	39	34	18	9.8
1945	10	19	17	9	19
1995	24	45	39	20	11

地震モーメント実測値と推定値(単位1018Nm)

OBS:観測値、T:(1)式、YS:(2)式、ERC:(3)式、IM(4)式。ただし三河地震では傾斜角を30度とし、福島県浜通りの地震では傾斜角を60度とし、(4)式の係数を傾斜角に応じて変えた。