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ABSTRACT

This report describes a new seismic source characterization (SSC) model for the Central and
Eastemn United States (CEUS). It will replace the Seismic Hazard Methodology for the Central
and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard
Characierization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore
National Laboratory Model, (Bemreuter et al., 1989). The objective of the CEUS SSC Project is
to develop a new seismic source mode] for the CEUS using a Senior Seismic Hazard Analysis .
Committee (SSHAC) Leve! 3 assessment process. The goel of the SSHAC process is to represent
the center, body, and range of technically defensible interpretations of the available data, models,
and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic
source characterization and ground motion characterization. These two components are used to
calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report
provides a new seismic source model.

Results and Findings

The product of this report is a regional CEUS SSC model. This mode! includes consideration of
an updated database, full assessment and incorporation of uncertainties, and the range of diverse
technical interpretations from the larger technical community. The SSC model will be widely
applicable to the entire CEUS, so this project uses a ground motion model that includes generic
variations to allow for a range of representative site conditions (deep soil, shallow soil, hard
rock). Hazard and sensitivity calculations were conducted at seven test sites representative of
different CEUS hazard environments.

Challenges and Objectives

The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and
who wish to use an updated SSC model. This model is based on a comprehensive and traceable
process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Fxperts. The model
will be used to assess the present-day composite distribution for seismic sources along with their
characterization in the CEUS and uncertainty. In addition, this mode! is in a form suitable for use
in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined
Operating License Applications (COLAs).

Applications, Values, and Use

Development of a regional CEUS seismic source model will provide value to those who (1) have
submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2)
will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues
resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs
to meet design and periodic review requirements for current and future nuclear facilities. This
work replaces a previous study performed approximately 25 years ago. Since that study was



completed, substantial work has been done to improve the understanding of seismic sources and
their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable
basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of
delays in new plant licensing due to more conservative interpretations in the existing and future
literature.

Perspective

The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE),
and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this
purpose was composed of distinguished subject matter experts from industry, govemment, and
academia. The resulting model is unique, and because this project has solicited input from the
present-day larger technical community, it is not likely that there will be a need for significant
revision for a number of years. See also Sponsors’ Perspective for more details.

Approach

The goal of this project was to implement the CEUS SSC work plan for developing a regional
CEUS SSC model. The work plan, formulated by the project manager and a technical integration
team, consists of a series of tasks designed to meet the project objectives. This report was
reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S.
Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were
considered when preparing the report. The SSC model was completed at the end of 2011.
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Probabilistic seismic hazard analysis (PSHA)
Seismic source characterization (SSC)
Seismic source characterization model
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Figure A-27 CEUS SSC complete Bouguer (with marine free-air) gravity anomaly grid
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SSC Project paleoliquefaction database, including New Madrid seismic zone and
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Figure E-2 Diagram illustrating size parameters of liﬁuefécﬁori features, including sand
blow thickness, width, and length; dike width; and sill thickness, as well as some of
the diagnostic characteristics of these features.
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Figure E-3 Diagram illustrating sampling strategy for dating of liquefaction features as
well as age data, such as 14C maximum and 14C minimum, used to calculate
preferred age estimates and related uncertainties of liquefaction features...................

Figure E-4 GIS map of New Madrid seismic zone and surrounding region showing
portions of rivers searched for earthquake-induced liquefaction features by M.
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Tuttle, R, Van Arsdale, and J. Vaughn and collaborators (see explanation);
information contributed for this report. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983,

Figure E-5 GIS map of New Madrid seismic zone and surrounding region showing
locations of liquefaction features for which there are and are not radiocarbon data.
Map projection is USA Contiguous Albers Equal Area Conic, North America Datum
198

Figure E-6 GIS map of New Madrld seismic zone and surroundmg region showing
locations of liquefaction features that are thought to be historical or prehistoric in
age or whose ages are poorly constrained. Map projection is USA Contiguous
Albers Equal Area Conic, North America Datum 1983,

Figure E-7 GIS map of New Madrid seismic zone and surrounding region showing
preferred age estimates of liquefaction features; features whose ages are poorly
constrained are excluded. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 1983.

Figure E-8 GIS map of New Madrid seismic zone and surrounding region showmg
measured thicknesses of sand blows. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983.

Figure E-9 GIS map of New Madrid seismic zorie and surrounding region showing
preferred age estimates and measured thicknesses of sand blows. Map projection

is USA Contiguous Albers Equal Area Conic, North America Datum 1983. ..................

Figure E-10 GIS map of New Madrid seismic zone and surrounding region showing
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal

Area Conic, North America Datum 1883, .......c.cecveenmmernssnnsaversssmsrsssssssssisnssessenessesees

Figure E-11 GIS map of New Madrid seismic zone and surrounding region showing

preferred age estimates and measured widths of sand dikes. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. ..........cccooerceverenene.

Figure E-12 GIS map of New Madrid seismic zone and surrounding region iflustrating
preferred age estimates and measured thicknesses of sand blows as well as
preferred age estimates and measured widths of sand dikes for sites where sand
blows do not occur. Map projection is USA Contiguous Albers Equal Area Conic,
North America Datum 1983,

Figure E-13 GIS map of Marianna, Arkansas, area shawing seismicity and locations of
paleoliquefaction features relative to mapped traces of Eastemn Reelfoot rift margin
fault, White River fault zone, Big Creek fault zone, Marianna escarpment, and
Daytona Beach lineament. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 1983.

Figure E-14 (A) Trench log and (B) ground-penetrating radar profite, showing vertical
sections of sand blows and sand dikes at Daytona Beach SE2 site along the
Daytona Beach lineament southwest of Marianna, Arkansas. Vertical scale of GPR
profile is exaggerated (modified from Al-Shukri et al., 2009).

Figure E-15 GIS map of Marianna, Arkansas, area showing locations of liquefaction
features for which there are and are not radiocarbon data. Map projection is USA
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Contiguous Albers Equal Area Conic, North America Datum 1983. ......c.cooeemerreevecesvnrens E-82

Figure E-16 GIS map of Marianna, Arkansas, area showing locations of liquefaction
features that are thought to be historical or prehistoric in age or whose ages are
poorly constrained. To date, no liquefaction features thought to have formed during
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1811-1812 earthquakes have been found in area. Map projection is USA

Contiguous Albers Equal Area Conic, North America Datum 1983. .......ccocveerrernscrarecs

Figure E-17 GIS map of Marianna, Arkansas, area showing preferred age estimates of
liquefaction features; features whose ages are poorly constrained are excluded.
Map pro;ection is USA Contiguous Albers Equal Area Comc. North America Datum
AOBB. ot serere e s sase e sesessesrsassanr e es e nesan

Figure E-18 GIS map of Marianna, Arkansas, area showing measured thlcknesses of

sand blows. Map pro;echon is USA Contlguous Albers Equal Area Conic, Nerth
America Datum 1983. . .

Figure E-19 GIS map of Mananna. Arkansas. area showmg preferred age estimates and
measured thicknesses of sand blows. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983.

Figure E-20 GIS map of Marianna, Arkansas, area showing measured widths of sand
dikes. Map projection is USA Contiguous Albers Equal Area Conic, North America
Datum 1983

Figure E-21 GIS map of Marianna, Arkansas, area showing preferred age estimates and
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983,

Figure E-22 GIS map of St. Louis, Missouri, region showing seismicity and portions of
rivers searched for earthquake-induced liquefaction features by Tuttle and
collaborators; information contributed for this report. Map projection is USA

Contiguous Albers Equal Area Conic, North America Datum 1983. ........ccevveureeirenennnes

Figure E-23 GIS map of St. Louis, Missouri, region showing locations of liquefaction
features, including several soft-sediment deformation structures, for which there are
and are not radiccarbon data. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 1983,

Figure E-24 GIS map of St. Louis, Missouri, region showing locations of liquefaction
features that are thought to be historical or prehistoric in age or whose ages are
poorly constrained. Map projection is USA Contiguous Albers Equal Area Conic,
North America Datum 1983,

Figure E-25 GIS map of St. Louis, Missouri, region showing preferred age estimates of
liquefaction features; features whose ages are poorly constrained, including several
that are prehistoric in age, are not shown. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983..............

Figure E-26 GIS map of St. Louis, Missouri, region showing measured thicknesses of
sand blows at similar scale as used in Figure E-8 of sand blows in New Madrid
seismic zone. Note that few sand blows have been found in St. Louis region. Map
projection is USA Contiguous Albers Equal Area Conic, North America Datum
1983,

Figure E-27 GIS map of St. Louis, Missouri, region showing preferred age estimates and
measured thicknesses of sand blows. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1983

Figure E-28 GIS map of St. Louis, Missouri, region showing measured widths of sand
dikes at similar scale as that used in Figure E-10 for sand dikes in New Madrid
seismic zone. Map projection is USA Contiguous Albers Equal Area Conic, North
America Datum 1983.

.E-83

..E-84

E-85

E-88

E-87

E-88

E-89

E-91

E-92

E-93

E-95

lix



Figure E-29 GIS map of St. Louis, Missouri, region showing measured widths of sand
dikes at similar scale as that used in Figures E-42 and E-48 for sand dikes in the
Newburyport and Charlevoix regions, respectively. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. .......ccooeeevvemvererrenecnns E-98

Figure E-30 GIS map of St. Louis, Missouri, region showing preferred age estimates and
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983........cccceeevennnene E-97

Figure E-31 GIS map of Wabash Valley seismic zone and surrounding region showing
portions of rivers searched for earthquake-induced liquefaction features (digitized
from McNulty and Obermeier, 1998). Map projection is USA Conhguous Albers
Equal Area Conic, North America Datum 1983, E-98

Figure E-32 GIS map of Wabash Valley seismic zone and surrounding region showmg
measured widths of sand dikes at similar scale as that used in Figures E-10 and E-
11 for sand dikes in New Madrid seismic zone. Map projection is USA Contiguous
Albers Equal Area Conic, North America Datum 1983. E-99

Figure E-33 GIS map of Wabash Valley region of Indiana and lllinois showing preferred
age estimates and paleoearthquake interpretation. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1883. ............... reanvenenen E-100

Figure E-34 GIS map of Arkansas-Louisiana-Mississippi (ALM) region showing
palaoliquefaction study locations. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983. E-101

Figure E-35 GIS map of Charleston, South Carolina, region showing locations of
paleoliquefaction features for which there are and are not radiocarbon dates. Map
projection is USA Contiguous Albers Equal Area Conic, North America Datum E102
1983. -

Figure E-35 GIS map of Charleston, South Carolina, region showing locations of
historical and prehistoric liquefaction features. Map projection is USA Contiguous
Albers Equal Area Conic, North America Datum 1983. E-103

Figure E-37 Map of Atlantic coast region showing areas searched for paleoliquefaction
features by Gelinas et al. (1998) and Amick, Gelinas, et al. (1990). Rectangles
indicate 7.5-minute quadrangles in which sites were investigated for presence of
paleoliquefaction features. The number of sites investigated is shown within that
quadrangle, if known. Orange and yellow indicate quadrangles in which
paleoliquefaction features were recognized. E-104

Figure E-38 Map of Central Virginia seismic zone region showing portions of rivers
searched for earthquake-induced hquefactlcn features by Obermeier and McNuIty
(1998). . semme st sesesnrs s ieseas s ssrsarssrss s eanmsssessen cereimeenens E-108

Figure E-39 GIS map of Newburyport Massachusetls and surrounding region showmg
seismicity and portions of rivers searched for earthquake-induced liquefaction
features (Gelinas et al., 1998; Tutlle, 2007, 2009). Solid black line crossing map
represents Massachuseus-New Hampshire border. Map pro;ection is USA
Contiguous Albers Equal Area Conic, North America Datum 1883. . ereesreneesnenes E-108

Figure E-40 GIS map of Newburyport, Massachusetts, and surrounding region showmg
locations of liquefaction features for which there are and are not radiocarbon dates.
Map projection is USA Contiguous Albers Equal Area Conic, North America Datum E-107
1983, -
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Figure E-41 GIS map of Newburyport, Massachuseits, and surrounding region showing
locations of liquefaction features that are thought to be historical or prehistoric in
age or whose ages are poorly constrained. Map projection is USA Contiguous
Albers Equal Area Conic, North America Datum 1983, E-108

Figure E<42 GIS map of Newburypori, Massachusetts, and surrounding region showing
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983. . . E-109

Figure E-43 GIS map of Newburyport, Massachusetts, and surrounding region showing
preferred age estimates and measured widths of sand dikes. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983. ...........c.ccocevereeenns E-110

Figure E-44 Map of Charlevoix seismic zone and adjacent St. Lawrence Lowlands
showing mapped faults and portions of rivers along which reconnaissance and
searches for earthquake-induced liquefaction features were performed. Charlevoix
seismic zone is defined by concentration of earthquakes and locations of histarical
earthquakes northeast of Quebec City. Devonian impact structure in vicinity of
Charlevoix seismic zone is outlined by black dashed line. Taconic thrust faults are
indicated by solid black lines with sawteeth on upper plate; lapetan rift faults are
shown by solid black lines with hachure marks on downthrown side (modified from
Tuttle and Atkinson, 2010). E-111

Figure E-45 GIS map of Charlevoix seismic zone and surrounding region showing
locations of liquefaction features, including several soft-sediment deformation
structures, for which there are and are not radiocarbon data. Note the location of
1988 M 5.9 Saguenay earthquake northwest of the Charlevoix seismic zone. Map
projection is USA Contiguous Albers Equal Area Conic, North America Datum
1983. E-112

Figure E-46 GIS map of Charlevoix seismic zone and surroundmg region showing
locations of liquefaction features that are modem, historical, or prehistoric in age, or
whose ages are poorly constrained. Map projection is USA Contiguous Albers
Equal Area Conic, North America Datum 1988. ;. E-113

Figure E-47 GIS map of Charlevoix seismic zone and surrounding region showing
preferred age estimates of liquefaction features; features whose ages are poorly
constrained are excluded. Map projection is USA Contiguous Albers Equal Area
Conic, North America Datum 1983. E-114

Figure E-48 GIS map of Charlevoix seismic zone and surrounding region showing
measured widths of sand dikes. Map projection is USA Contiguous Albers Equal
Area Conic, North America Datum 1983. E-115

Figure E-49 G!S map of Charlevoix seismic zone and surrounding region showing
preferred age estimates and measured widths of sand dikes. Map projection is USA
Contiguous Albers Equal Area Conic, North America Datum 1983, ......cccvcecrsnncroreee E-116

Figure £-50 Photograph of moderate-sized sand blow (12 m long, 7 m wide, and 14 cm
thick) that formed about 40 km from epicenter of 2001 M 7.7 Bhuj, India,
earthquake (from Tuttle, Hengesh, et al., 2002), combined with schematic vertical
section illustrating structural and stratigraphic relations of sand blow, sand dike, and

source layer (modified from Sims and Garvin, 1995). ................... E-117
Figure E-51 Tree trunks buried and killed by sand blows, vented during 1811 1812 New

Madrid earthquakes (from Fuller, 1912)... E-118
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Figure E-52 Large sand-blow crater that formed during 2002 M 7.7 Bhui, India,

earthquake. Backpack for scale. Photograph: M. Tuttle (2001). .......ccccoemvvrvrremerenvaerense E-119
Figure E-53 Sand-blow crater that formed during 1886 Charleston, South Carolina,
earthquake. Photograph: J.K, Hillers (from USGS Photograph Library). ..........eeeeeneee E-120

Figure E-54 Photograph of sand blow and related sand dikes exposed in trench wall and
floor in New Madrid seismic zone. Buried soil horizon is displaced downward
approximately 1 m across two dikes. Clasts of soil horizon occur within dikes and
overlying sand blow. Degree of soil development above and within sand blow
suggests that itis at least several hundred years old and formed prior to 1811-1812
New Madrid earthquakes. Organic sample (location marked by red flag) from crater
fill will provide close minimum age constraint for formation of sand blow. For scale,
each colored intervals on shovel handle represents 10 cm. Photograph: M. Tuttle...... E-121

Figure E-55 Sand dikes, ranging up to 35 cm wide, originate in pebbly sand layer and
intrude overlying diamicton, These features were exposed in cutbank along
Cahokia Creek about 25 km northeast of downtown St. Louis (from Tuttle, 2000). ...... E-122

Figure E-56 Photograph of small diapirs of medium sand intruding base of overlying
deposit of interbedded clayey silt and very fine sand, and clasts of clayey silt in
underlying medium sand, observed along Ouelle River in Charlevoix seismic zone.
Sand diapirs and clasts probably formed during basal erosion and foundering of
clayey silt due to liquefaction of the underlying sandy deposit. Red portion of shovel
handle represents 10 cm (modified from Tuttle and Atkinson, 2010)..............cccveseenene E-123

Figures E-57 (A) Load cast formed in laminated sediments of Van Norman Lake during
1952 Kern County, California, earthquake. Photograph: J. Sims (from Sims, 1975).
(B) Load cast, pseudonodules, and related folds formed in laminated sediment
exposed along Malbaie River in Charlevoix seismic zone. Sand dikes crosscutting
these same laminated sediments occur at a nearby site. For scale, each painted
interval of the shovel handle represents 10 cm (modified from Tuttle and Atkinson,
2010). E-124

Figure E-58 Log of sand blow and uppermost portions of related sand dikes exposed in
trench wall at Dodd site in New Madrid seismic zone. Sand dikes were also
observed in opposite wall and trench floor. Sand blow buries pre-event A horizon,
and a subsequent A horizon has developed in top of sand blow. Radiocarbon dating
of samples collected above and below sand blow brackets its age between 480 and
660 yr BP. Artifact assemblage indicates that sand blow formed during late
Mississippian (300-550 yr BP or AD 1400-1670) (modified from Tuttle, Collier, ot
al., 1999). E-125

Figures E-59 (A) Photograph of earthquake-induced liquefaction features found in

association with cultural horizon and pit exposed in trench wall near Blytheville,

Arkansas, in New Madrid seismic zone. Photograph: M. Tuttle. (B) Trench log of

features shown in (A). Sand dike formed in thick Native American occupation

horizon containing artifacts of early Mississippian cultural period (950—1,150 yr BP).

Cultural pit dug into top of sand dike contains artifacts and charcoal used to

constrain minimum age of liquefaction features (modified from Tuttle and Schweig,

1995), E-126
Figure E-60 In situ tree trunks such as this one buried and killed by sand blow in New

Madrid seismic zone offer opportunity to date paleoearthquakes to the year and
season of occurrence. Photograph: M. Tuttle. E-127
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Figure E-61 Portion of dendrocalibration curve illustrating conversion of radiocarbon age
to calibrated date in calendar years. In example, 2-sigma radiocarbon age of 2,280~
2,520 BP is converted to calibrated date of 770-380 BC (from Tuttle, 1999)............... E-128

Figure E-62 Empirical relation developed between A horizon thickness of sand blows
and years of soil development in New Madrid region. Horizontal bars reflect
uncertainties in age estimates of liquefaction features; diamonds mark midpoints of
possible age ranges (from Tuttle et al,, 2000)... E-129

Figure E-63 Diagram illustrating earthquake chronology for New Madrid seismic zone for
past 5,500 years based on dating and correlation of liquefaction features at sites
(listed at top) across region from north to south. Vertical bars represent age
estimates of individual sand blows, and horizontal bars represent event times of
138 yr BP (AD 1811-1812); 500 yr BP + 150 yr; 1,050 yr BP + 100 yr; and 4,300 yr
BP + 200 yr (modified from Tuttle, Schweig, et al., 2002; Tuttle et al,, 2005). .............. E-130

Figure E-64 Diagram illustrating earthquake chronology for New Madrid seismic zone for
past 2,000 years, similar to upper portion of diagram shown in Figure E-63. As in
Figure E-B3, vertical bars represent age estimates of individual sand blows, and
horizontal bars represent event times. Analysis performed during CEUS SSC
Project derived two possible uncertainty ranges for timing of palecearthquakes,
illustrated by the darker and lighter portions of the colored horizontal bars,
respectively: 503 yr BP x 8 yr or 465 yr BP £ 65 yr, and 1,110 yr BP + 40 yr or 1055
+ 85 yr (modified from Tuttle, Schweig, et al., 2002). E-131

Figure E-65 Maps showing spatial distributions and sizes of sand blows and sand dikes
attributed to 5§00 and 1,050 yr BP events. Locations and sizes of liquefaction
features that formed during AD 1811-1812 (138 yr BP) New Madrid earthquake
sequence shown for comparison (modified from Tuttle, Schweig, et al., 2002)............ E-132

Figure E-86 Liquefaction fields for 138 yr BP (AD 1811-1812); 500 yr BP (AD 1450); and
1,050 yr BP (AD 900) events as interpreted from spatial distribution and
stratigraphy of sand blows (modified from Tuttle, Schweig, et al., 2002), Ellipses
define areas where similar-age sand blows have been mapped. Overlapping
ellipses indicate areas where sand blows are composed of multiple units that
formed during sequence of earthquakes. Dashed ellipse outlines area where
historical sand blows are composed of four depositional units. Magnitudes of
earthquakes in 500 yr BP and 1,050 yr BP are inferred from comparison with 1811-
1812 liquefaction fields. Magnitude estimates of December (D), January (J), and
February (F) main shocks and large aftershocks taken from several sources;
rupture scenario from Johnston and Schweig (1996; modified from Tuttle, Schweig,
et al,, 2002). E-133

Figure E-67 Empirical relation between earthquake magnitude and epicentral distance to
farthest known sand blows induced by instrumentally recorded eanhquakes
(modified from Castilla and Audemard, 2007). E-134

Figure E-68 Distances to farthest known liquefaction features indicate that 500 and
1,050 yr BP New Madrid events were at least of M 6.7 and 6.9, respectively, when
plotted on Ambraseys (1988) relation between earthquake magnitude and
epicentral distance to farthest surface expression of liquefaction. Similarity in size
distribution of historical and prehistoric sand blows, however, suggests that
paleoearthquakes were comparable in magnitude to 1811-1812 events or M ~7.6
(modified from Tuttle, 2001). ......... E-135
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Figure J-1 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 1 J-2

Figure J-2 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 2 .. J-3

Figure J-3 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 3... -4

Figure J-4 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 4 J-5

Figure J-5 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 5 J-6

Figure J-8 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended Case A magmtude
weights: Realization 6 .........coccvennsneiinnens J-7

Figure J-7 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 7 J-8

Figure J-8 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 8 J-9
Figure J-8 Map of the coefficient of variation of the rate and the standard deviation of the
b-value for the study region under the Mmax zonation, with no separation of
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Figure J-10 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 1 J-11
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Figure J-12 Map of the rate and b-value for the study region under the Mmax zonatlon
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 3 J-13




Figure J-13 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 4

Figure J-14 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 5..

Figure J-15 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 6 ..
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Figure J-16 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 7
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Figure J-17 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 8

Figure J-18 Map of the coefficient of variation of the rate and the standard deviat(on of

the b-value for the study region under the Mmax zonation, with no separation of
Mesozoic extended and non-extended; Case B magnitude weights.

Figure J-19 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 1
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Figure J-20 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 2

Figure J-21 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extendad; Case E magnitude
weights: Realization 3.
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Figure J-22 Map of the rate and b-valua for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-exlended; CaseE magnitude
weights: Realization 4

Figure J-23 Map of the rate and b-value for the study region under the Mmax zonahon
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 5

Figure J-24 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 6

Figure J-25 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 7
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Figure J-26 Map of the rate and b-value for the study region under the Mmax zonation,
with no separation of Mesozoic extended and non-extended; Case E magmtude
weights: Realization 8.........cvveeeceecerrerensensereseans

Figure J-27 Map of the coefficient of variation of the rate and the standard dewahon of
the b-value for the study region under the Mmax zonation, with no separation of
Mesozoic extended and non-extended; Case E magnitude weights

Figure J-28 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 1

Figure J-28 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magmtude
weights: Realization 2
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Figure J-30 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 3
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Figure J-31 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 4

Figure J-32 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 5
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Figure J-33 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 6

Figure J-34 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 7

Figure J-35 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended, Case A magnitude

J-34

weights: Realization 8

Figure J-36 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case A magnitude weights...........cceceeerrennene

Figure J-37 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 1

Figure J-38 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case B magnitude
weights: Realization 2

Figure J-39 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 3

Figure J-40 Map of the rate and b-value for the study region under the Mmax zonation,

with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 4

Figure J-41 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 5
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with separation of Mesozoic extended and non-extended; Case B magmtude
weights: Realization 6
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Figure J-43 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 7
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Figure J-44 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case B magnitude

weights: Realization 8-

Figure J-45 Map of the coefficient of vanaﬂon of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of
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Mesozoic extended and non-extended; Case B magnitude weights.

Figure J-46 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 1

Figure J-47 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 2........

Figure J-48 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 3
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Figure J-48 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 4

Figure J-50 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 5

Figure J-51 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 6
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Figure J-52 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended,; Case E magnitude

weights: Realization 7
Figure J-53 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude

weights: Realization 8

Figure J-54 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case E magnitude weights..............ceeeeeee.

Figure J-55 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realizafion 1
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Figure J-56 Map of the rate and b-value for the study regnon under the Mmax zonation,
with separation of Mesozoic extendad and non-extended; Case A magnitude
weights: Realization 2

Figure J-57 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 3
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Figure J-58 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 4

Figure J-59 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 5
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Figure J-60 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 6...

Figure J-61 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude
weights: Realization 7

Figure J-82 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case A magnitude

weights: Realization 8

Figure J-63 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of
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Figure J-64 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 1.
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Figure J-85 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 2

Figure J-66 Map of the rate and b-value for the study reglon under the Mmax zonation,
with separation of Mesozoic extended and non-extended Case B magnitude
weights: Realization 3

Figure J-87 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 4

Figure J-88 Map of the rate and b-valus for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 5
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Figure J-89 Map of the rate and b-value for the study region under the Mmax zonatlon.
with separation of Mesozoic extended and non-extended; Case B magmtude

weights: Realization 6..

Figure J-70 Map of the rate and b-value for the study region under the Mmax zonanon
with separation of Mesozoic extended and non-extended; Case B magnitude
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weights: Realization 7 ......

Figure J-71 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case B magnitude
weights: Realization 8

Figure J-72 Map of the coefficient of variation of the rate and the standard devnat:on of
the b-value for the study region under the Mmax zonation, with separation of

Mesozoic extended and non-extended; Case B magnitude weights.............cceenve...
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Figure J-7‘."s Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 1

Figure J-74 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 2

Figure J-75 Map of the rate and b-value for tha study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
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Figure J-76 Map of the rate and b-value for the study reglon under the Mmax zonatlon
with separation of Mesozoic extended and non-extended Case E magnitude
weights: Realization 4
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Figure J-77 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magmtude
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Figure J-78 Map of the rate and b-value for the sludy region under the Mmax zonatlon.
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 6

Figure J-79 Map of the rate and b-valus for the study region under the Mmax 2onation,
with separation of Mesozoic extended and non-extended; Case E magnitude
welghts: Realization 7

SR ]

J-79

J-80

Figure J-80 Map of the rate and b-value for the study region under the Mmax zonation,
with separation of Mesozoic extended and non-extended; Case E magnitude
weights: Realization 8

Figure J-81 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the Mmax zonation, with separation of
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Figure J-82 Map of the rate and b-value for the study region under the seismotectonic
Zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
1
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Figure J-83 Map of the rate and b-value for the study region under the seismotectonic
2onation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
2 . .
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Figure J-84 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
3
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Figure J-85 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
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Figure J-88 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narow interpretation of PEZ; Case A magnitude weights: Realization
5
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Figure J-87 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
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Figure J-88 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
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Figure J-89 Map of the rate and b-value for the study region under the seismatectonic
zonation, with narrow interpretation of PEZ; Case A magnitude weights: Realization
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Figure J-90 Map of the coefficient of variation of the rate and the standard deviation of
the b-value for the study region under the seismotectonic zonation, with narrow
interpretation of PEZ; Case A magnitude weights

J-91

Figure J-91 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narow interpretation of PEZ; Case B magnitude weights: Realization

Figure J-92 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
2
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Figure J-93 Mép of the rate and b-value for the study 'region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
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Figure J-98 Map of the rate and b-value for the study region under the seismotectonic
2onation, with nammow interpretation of PEZ; Case B magnitude weights: Realization
8

J-99
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4

J-104

Figure J-104 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
5

J-105

Figure J-105 Map of the rate and b-value for fhe study region under the seismotectbnic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
6

Figure J-106 Map of the rate and b-value for the study region under the seismotectonic

zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
7

J-106

J-107
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Figure J-122 Map of the rate and b-value for the study region under the seismotectonic
2onation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
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Figure J-123 Map of the rate and b-value for the study region under the seismatectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
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Figure J-124 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case B magnitude weights: Realization
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Figure J-126 Map of the coefficient of variation of the rate and the standard deviation of
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Figure J-127 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
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Figure J-128 Map of the rate and b-value for the study region under the seismatectonic
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Figure J-129 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
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Figure J-130 Map of the rate and b-value for the study fegion under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
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Figure J-131 Map of the rate and b-value for the study region under the seismatectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
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Figure J-132 Map of the rate and b-value for the study region under the seismotectonic
zonation, with narrow interpretation of PEZ; Case E magnitude weights: Realization
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Figure J-133 Map of the rate and b-value for the study region under the seismotectonic
2onation, with namow interpretation of PEZ; Case E magnitude weights: Realization
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