A 甲第//2号証

耐P「第4-6-1号

岩盤における設計用地震動評価手法 (耐専スペクトル)について

2007/08/24 独立行政法人 原子力安全基盤機構

社団法人 日本電気協会 原子力発電耐震設計 専門部会(耐専)最新の経験的地震動評価法に ついて審議され、基準地震動の合理的な策定方 法が取りまとめられた。

- ・1999年 地震基盤から定義した解放基盤の
 地震動評価手法を提案
- ・2001年~ 内陸地殻内地震の適用性検討
- ・2002年 OECD/NEAワークショップ へ発表
- ・2005年 内陸地殻内地震、スラブ内地震の 適用性を追加

- 解放基盤面の地震動スペクトル
- 異なる減衰定数のスペクトル
- 地震動の経時特性

1. 耐専スペクトルの位置付け

1-1 なぜ経験的方法が必要か

◈耐専スペクトル

■ 距離減衰式に基づく地震動の経験的評価法

◈経験的方法

■基本式: S(T) = f(M, X)

◆経験的方法の必要性

* 実観測記録に基づいて設定

*実現象の平均像を忠実に再現

■ 断層モデルを用いた場合も経験式で確認

*例:強震動評価のレシピ

1-2 従来の経験的方法の課題

◈基になるデータセット

■ 硬質岩盤の記録が少ない

◈経験式の表現

物理的意味が不明瞭

◆地盤増幅率の考え方

■ どの程度の基盤に対する増幅か

◈点震源の仮定

■ 断層面の面的な拡がりの考慮が必要

◈震源近傍の地震動

■ 破壊伝播効果の取り扱い

◆上下動の評価

6

2. 耐専スペクトルの特徴

⊯ Vs =	0.5~	•2. 7km	/s : Vp	= 1.7~	•5.5km/s
****	時分	版制位置	地盘速度(Vs)	記錄成分数	データの領正
古网	TMK	GL-100m	0.70km/s	30	はぎとり
井出川	IDG	GL	2.00km/s	6	岳(破り厚2.0m)
餐平	HKD	OL	2.70km/s	4	岳(街り厚6.9m)
小玉川	KDG	GL-10m	2.20km/s	20	地会特性の補正
いわき	IWK	GL-21m	1.18km/s	38	はぎとり
大说	OAR	GL-14m	1.00km/s	16	無
東松山	HMY	GL-58m	0.75km/s	18	はぎとり
小川	OGW	GL-10m	2.1km/s	6	ŧť.
统子	CHS -	GL-18m	1.4km/s	32	はぎとり
館山	TTY	GL-43m	0.6km/s	12	缹
館山A	TTA	GL	0.5km/s	10	. 無(抜り厚1.5m)
体容带	SZJ	GL-36m	0.65km/s	22	はぎとり
合計	1.			214	

物理的意味が明解な経験式の採用 1) 経験式の設定 ◆無限媒質の遠方近似解 $F(f) = \frac{R_{\theta\phi}\omega^2}{4\pi\rho V_s^3} M_0(f) \frac{1}{X} \exp(\frac{-\pi f X}{V_s Q(f)}) G(f)$ _ (1) ◆経験的距離減衰式 $\log F(f) = a(f)M - (\log X + b(f)X) + c(f)$ (2)◆ (1) 式と(2) 式の比較: M₀(f) = P₀(f) 10^a(f)M</sup> と仮定 $a(f) = (\log M_0(f) - \log P_0(f)) / M$ $b(f) = (\log e)\pi f / V_s Q_s(f)$ $c(f) = \log(R_{\theta\phi}P_0(f)G(f)/4\pi\rho V_s^3)$

2) 断層面の面的な拡がりの効果を等価震源距離で考慮 $X_{eq}^{-2} = \int e_m x_m^{-2} ds / \int e_m ds$ (1) x_m : 観測点から断層面の各微小領域mへの距離 (km)

em:断層面上の各微小領域mからの地震波エネルギーの相対的放出分布 ds:断層面の微小領域mの面積(km²)

14

地盤のVsに応じた地震基盤からの増幅率の評価

m.

INE ISECI

1985年チリ、1985年メキシコ地震を含むM8クラスの地震

震源近傍の観測記録はFN(断層直行方向)が卓越

~1	3) 近年(の地震に	よる適	用性の	確認
----	--------	------	-----	-----	----

	年月日	Earthquake	Xeq計算に用 いた意識モデル	Sita	Mw (HRV)	мр*1	Xeq (km)	•7 NFRD	Vs (<u>km/s</u>)	۷p (km/s)	Vs.Vp <u>XP</u>
日本	1995.1.17	FARMAR	Kakehi et al. [7]	神戸大*2	6,9	7.3	. 16	0	0.6	1.7_	.[16
- • •	2000.11.6	ADRAS	Yagi & Kökuchi (8)	ସ ለያለ	6.8	7.3	Ģ		2.2	4.Z	開き
				伯太*3	6,8	7.3	<u> 11</u>		2.8.		[17
米国	1971.2.9	San Fernando	Hoaton (9)	Pacoima Dam *4	6.6	7.1	8	0	1.S	3.0	[18
			• •	Caltec Seism, Lob.	6.6	7.1	29		0.83	1,3	- {17
				Griffith Park	6.6	7.1	25		0,75	1.75	
	1979.8.6	Covote Lake	Liu & Helmberger [10]	Girloy #1	5.8	6,0	- 16		2.2 "	2,75	[20
-	1984.4.24	Morgan Hill	Harczell & Heaton [11]	Girloy #1	6.Ž	6,5	24		2.2	2.75	251
	1989.10.18	Loma Prieta	Wald et al. [12]	Girloy #1	7.0	7.6	30	·	2.2	2.75	_ (ż(
				Lexington Dam	7.0	7.6	20	<u> 0</u>	0.87	2.1	[2]
	1994.1.17	Northridge	Wald & Heaton (13)	Pacoima Dam *5	6.7	7.2	21	0	1.5	3.0	- (n
				Griffith Park	6.7	7.Z	33		0,75	1,75	[]1
				USC Sta. 17	6.7	. 7.2.	29		1.0	2.0	.[1]
トルコ	1999.8.17	Koczeli	Sekiguchi & Iwata [14]	Gebzo (GBZ)	7,4	8,1	33	0	0.78	2.13	[Z
				Sakarya (SKR)	7.4	8.1	22		1.05	2.57	(Z
6.5	1999.9.21	四 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	Yagi & Kikuchi (15)	TCU052 *6	7,6	7.7	20	0	0.62		{S
				TCU065	7.6	7.7	23	0	0.72		(Z
				TCU067	7.6	7.7	20	0	0,76		(2
				TCU068	7.6	7.7	24	0	D.58		{Z
				TCU071	7.6	7.7	16		0.96		[2
		•		TCU072	7.6	7,7	16		1.22		[2
				TCU074	7.6	7.7	23		1.1		[2
				TCU075	7.6	7.7	24	0	0.98		[Z
				TCU076	7.6	7.7	26	0	0,75		{2
				TCU10Z	7.6	7.7	26	0	0.93		<u>[2</u>

					ב	ントロー	ルポイン	トの座	₩ pS.	(cm/s)	
€				A	В	С	D	Ε	F	<u>.</u> G .	A.
		м	X.,	TA(s)	TB(s)	TC(s)	TD(s)	TE(s)	TF(s)	TG(s)	TH(s)
			(km	0.02	0.09	0.13	0.30	0.60	L.00	2.00	5.00
	極近距離	8.5	40	1.62	18.44	27.32	47.87	68.05	64.66	53.52	40:06
		8	25	1.69	20.05	28.96	48.22	67.80	65.25	52.51	38.35
		7	12	1.40	17.20	24.84	33.86	43.42	36.42	25.15	17.85
		6	6	1.04	12.82	18.51	21.84	23.17	17.41	9.64	3.88
1	近距離	8.5	80	0.73	7.36	11.43 .	22.92	34.79	32.58	27.60	21.96
11、11、雨甘酸の		8	50	0.67	2.45	11.17	20.05	28.65	27.06	22.70	17.19
		7	20	0.78	9.44	13.64	19.10	24.83	20.69	14.46	10.37
コントロール		6	8	0.77	9.45	13.65	16.23	17.18	12.73	.7.16	2.89
ホイント	中距離	8.5	160	0.26	2.22	3.67	9.45	15.17	14.83	13.64	12.26
		8	100	0.32_	3.08	4.86	10.27	16.04	14,96	L2.73	10.37
		7	50	0.23	2.65	4.01	6.02	7.64	6.68	4.87	3.64
		6	25.	0.21	2.49	3.60	4.54	4.84	3.98	2.07	0.86
	遠距棘	8.5	200	0.18	1.44	2.43	6.87	11.17	11.17	10.67	10.04
		8	200	0.10	0.80	1.35	3.82	6.21	6.21	5.93	5.58
		7	125	0.046	0.43	0.70	1.34	1.81	1.59	1.26	1.05
		6	78	0.041	0.45	0.65	0.95	1.03	0.80	0.49	0.22

図4 減衰定数 h による応答スペクトルの補正係数

時四 (秒)

参考 主な発表論文

- 【地震観測】表俊一郎・太田外気晴, 1982, 岩盤における強震アレー観測, 日本地震工学シンポジウム(第6回), 193-200.
- ◆【応答スペクトル】高橋克也・武村雅之・藤堂正喜・渡辺孝英・野田静 男、1998、様々な岩盤上での強震動応答スペクトルの予測式、第 10回日本地震工学シンポジウム、547-552.
- 【スペクトルインバージョン解析】Takemura, M., K. Kato, T. [keura, and E. Shima, 1991, Site amplification of S-waves from strong motion records in special relation to surface geology, J. Phys. Earth, 39, 537-552.
 [state of the strong s
- Kato, K., M. Takemura, T. Ikeura, K. Urao, and T. Uetake, 1992, Preliminary analysis for evaluation of local site effects from strong motion spectra by an inversion method, J. Phys. Earth, 40, 175-191.

37

- ◆【等価震源距離】Ohno, S., T. Ohta, T. Ikeura, and M. Takemura, 1993, Revision of attenuation formula considering the effect of fault size to evaluate strong motion spectra in near field, Tectonophysics, 218, 69-81.
- ◆【最適化地盤モデル(水平地震動)】武村雅之・池浦友則・高橋克也・ 石田寛・大島豊, 1993, 堆積地盤における地震波減衰特性と地震 動評価, 日本建築学会構造系論文報告集, 446, 1-11.
- ◆【最適化地盤モデル(上下地震動)】藤堂正喜・羽鳥敏明・千葉脩・高橋克也・武村雅之・田中英郎, 1995, 堆積地盤における上下地震動の特性とQp構造, 日本建築学会構造系論文集, 475, 45-54.